ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.17351
  4. Cited By
Learn from Heterophily: Heterophilous Information-enhanced Graph Neural
  Network

Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network

26 March 2024
Yilun Zheng
Jiahao Xu
Lihui Chen
ArXivPDFHTML

Papers citing "Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network"

3 / 3 papers shown
Title
What Is Missing In Homophily? Disentangling Graph Homophily For Graph
  Neural Networks
What Is Missing In Homophily? Disentangling Graph Homophily For Graph Neural Networks
Yilun Zheng
Sitao Luan
Lihui Chen
44
5
0
27 Jun 2024
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
94
562
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
1