ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16432
  4. Cited By
$\textit{LinkPrompt}$: Natural and Universal Adversarial Attacks on
  Prompt-based Language Models

LinkPrompt\textit{LinkPrompt}LinkPrompt: Natural and Universal Adversarial Attacks on Prompt-based Language Models

25 March 2024
Yue Xu
Wenjie Wang
    SILM
    AAML
ArXivPDFHTML

Papers citing "$\textit{LinkPrompt}$: Natural and Universal Adversarial Attacks on Prompt-based Language Models"

2 / 2 papers shown
Title
A Prompting-based Approach for Adversarial Example Generation and
  Robustness Enhancement
A Prompting-based Approach for Adversarial Example Generation and Robustness Enhancement
Yuting Yang
Pei Huang
Juan Cao
Jintao Li
Yun Lin
J. Dong
Feifei Ma
Jian Zhang
AAML
SILM
38
13
0
21 Mar 2022
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,959
0
20 Apr 2018
1