ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.15146
  4. Cited By
On the Convergence of Adam under Non-uniform Smoothness: Separability
  from SGDM and Beyond

On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond

22 March 2024
Bohan Wang
Huishuai Zhang
Qi Meng
Ruoyu Sun
Zhi-Ming Ma
Wei Chen
ArXiv (abs)PDFHTML

Papers citing "On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond"

11 / 11 papers shown
Title
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
Qi Zhang
Yi Zhou
Shaofeng Zou
109
7
0
01 Apr 2024
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters
  and Non-ergodic Case
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
61
9
0
20 Jul 2023
Convex and Non-convex Optimization Under Generalized Smoothness
Convex and Non-convex Optimization Under Generalized Smoothness
Haochuan Li
Jian Qian
Yi Tian
Alexander Rakhlin
Ali Jadbabaie
70
44
0
02 Jun 2023
Two Sides of One Coin: the Limits of Untuned SGD and the Power of
  Adaptive Methods
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
Junchi Yang
Xiang Li
Ilyas Fatkhullin
Niao He
74
17
0
21 May 2023
The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
  Gradients and Affine Variance
The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded Gradients and Affine Variance
Matthew Faw
Isidoros Tziotis
Constantine Caramanis
Aryan Mokhtari
Sanjay Shakkottai
Rachel A. Ward
67
61
0
11 Feb 2022
Improved Analysis of Clipping Algorithms for Non-convex Optimization
Improved Analysis of Clipping Algorithms for Non-convex Optimization
Bohang Zhang
Jikai Jin
Cong Fang
Liwei Wang
104
92
0
05 Oct 2020
A Simple Convergence Proof of Adam and Adagrad
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
123
159
0
05 Mar 2020
Lower Bounds for Non-Convex Stochastic Optimization
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
93
362
0
05 Dec 2019
Why gradient clipping accelerates training: A theoretical justification
  for adaptivity
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
80
467
0
28 May 2019
A Sufficient Condition for Convergences of Adam and RMSProp
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
63
372
0
23 Nov 2018
Convergence guarantees for RMSProp and ADAM in non-convex optimization
  and an empirical comparison to Nesterov acceleration
Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration
Soham De
Anirbit Mukherjee
Enayat Ullah
71
101
0
18 Jul 2018
1