ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13247
  4. Cited By
FedNMUT -- Federated Noisy Model Update Tracking Convergence Analysis

FedNMUT -- Federated Noisy Model Update Tracking Convergence Analysis

20 March 2024
Vishnu Pandi Chellapandi
Antesh Upadhyay
Abolfazl Hashemi
Stanislaw H. .Zak
    FedML
ArXivPDFHTML

Papers citing "FedNMUT -- Federated Noisy Model Update Tracking Convergence Analysis"

8 / 8 papers shown
Title
FedMFS: Federated Multimodal Fusion Learning with Selective Modality
  Communication
FedMFS: Federated Multimodal Fusion Learning with Selective Modality Communication
Liangqi Yuan
Dong-Jun Han
Vishnu Pandi Chellapandi
Stanislaw H. .Zak
Christopher G. Brinton
77
11
0
10 Oct 2023
Federated Learning for Connected and Automated Vehicles: A Survey of
  Existing Approaches and Challenges
Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges
Vishnu Pandi Chellapandi
Liangqi Yuan
Christopher G. Brinton
Stanislaw H. .Zak
Ziran Wang
FedML
86
81
0
21 Aug 2023
Detection of False Data Injection Attacks in Smart Grid: A Secure
  Federated Deep Learning Approach
Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach
Yang Li
Xinhao Wei
Yuan Li
Zhaoyang Dong
M. Shahidehpour
48
202
0
02 Sep 2022
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
  Heterogeneous Data
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
46
101
0
09 Feb 2021
Distributed Stochastic Gradient Tracking Methods
Distributed Stochastic Gradient Tracking Methods
Shi Pu
A. Nedić
51
288
0
25 May 2018
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
269
4,620
0
18 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
234
17,328
0
17 Feb 2016
Distributed optimization over time-varying directed graphs
Distributed optimization over time-varying directed graphs
A. Nedić
Alexander Olshevsky
47
993
0
10 Mar 2013
1