ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13208
35
4

CaDRE: Controllable and Diverse Generation of Safety-Critical Driving Scenarios using Real-World Trajectories

19 March 2024
Peide Huang
Wenhao Ding
Jonathan M Francis
Bingqing Chen
Ding Zhao
ArXivPDFHTML
Abstract

Simulation is an indispensable tool in the development and testing of autonomous vehicles (AVs), offering an efficient and safe alternative to road testing by allowing the exploration of a wide range of scenarios. Despite its advantages, a significant challenge within simulation-based testing is the generation of safety-critical scenarios, which are essential to ensure that AVs can handle rare but potentially fatal situations. This paper addresses this challenge by introducing a novel generative framework, CaDRE, which is specifically designed for generating diverse and controllable safety-critical scenarios using real-world trajectories. Our approach optimizes for both the quality and diversity of scenarios by employing a unique formulation and algorithm that integrates real-world data, domain knowledge, and black-box optimization techniques. We validate the effectiveness of our framework through extensive testing in three representative types of traffic scenarios. The results demonstrate superior performance in generating diverse and high-quality scenarios with greater sample efficiency than existing reinforcement learning and sampling-based methods.

View on arXiv
Comments on this paper