ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12784
32
0

Total Disentanglement of Font Images into Style and Character Class Features

19 March 2024
Daichi Haraguchi
Wataru Shimoda
Kota Yamaguchi
Seiichi Uchida
    DRL
ArXivPDFHTML
Abstract

In this paper, we demonstrate a total disentanglement of font images. Total disentanglement is a neural network-based method for decomposing each font image nonlinearly and completely into its style and content (i.e., character class) features. It uses a simple but careful training procedure to extract the common style feature from all `A'-`Z' images in the same font and the common content feature from all `A' (or another class) images in different fonts. These disentangled features guarantee the reconstruction of the original font image. Various experiments have been conducted to understand the performance of total disentanglement. First, it is demonstrated that total disentanglement is achievable with very high accuracy; this is experimental proof of the long-standing open question, ``Does `A'-ness exist?'' Hofstadter (1985). Second, it is demonstrated that the disentangled features produced by total disentanglement apply to a variety of tasks, including font recognition, character recognition, and one-shot font image generation.

View on arXiv
Comments on this paper