ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.10686
  4. Cited By
AutoHLS: Learning to Accelerate Design Space Exploration for HLS Designs

AutoHLS: Learning to Accelerate Design Space Exploration for HLS Designs

15 March 2024
Md Rubel Ahmed
T. Koike-Akino
K. Parsons
Ye Wang
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "AutoHLS: Learning to Accelerate Design Space Exploration for HLS Designs"

5 / 5 papers shown
Title
Deep Inverse Design for High-Level Synthesis
Deep Inverse Design for High-Level Synthesis
Ping Chang
Tosiron Adegbija
Yuchao Liao
Claudio Talarico
Ao Li
Janet Roveda
85
0
0
11 Jul 2024
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power
  Machine Learning Devices
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
F. Fahim
B. Hawks
C. Herwig
J. Hirschauer
S. Jindariani
...
J. Ngadiuba
Miaoyuan Liu
Duc Hoang
E. Kreinar
Zhenbin Wu
56
133
0
09 Mar 2021
Machine Learning for Electronic Design Automation: A Survey
Machine Learning for Electronic Design Automation: A Survey
Guyue Huang
Jingbo Hu
Yifan He
Jialong Liu
Mingyuan Ma
...
Yuzhe Ma
Haoyu Yang
Bei Yu
Huazhong Yang
Yu Wang
65
236
0
10 Jan 2021
Pyramid: Machine Learning Framework to Estimate the Optimal Timing and
  Resource Usage of a High-Level Synthesis Design
Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design
Hosein Mohammadi Makrani
Farnoud Farahmand
Hossein Sayadi
Sara Bondi
Sai Manoj P D
Liang Zhao
Avesta Sasan
Houman Homayoun
S. Rafatirad
33
72
0
29 Jul 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
666
5,835
0
25 Jul 2019
1