Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.10045
Cited By
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
15 March 2024
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Adversarially Robust Dataset Distillation by Curvature Regularization"
50 / 51 papers shown
Title
Robust Dataset Distillation by Matching Adversarial Trajectories
Wei Lai
Tianyu Ding
ren dongdong
Lei Wang
Jing Huo
Yang Gao
Wenbin Li
AAML
DD
79
0
0
15 Mar 2025
Dataset Distillation via Committee Voting
Jiacheng Cui
Zhaoyi Li
Xiaochen Ma
Xinyue Bi
Yaxin Luo
Zhiqiang Shen
DD
FedML
114
2
0
13 Jan 2025
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
104
2
0
13 Aug 2024
BACON: Bayesian Optimal Condensation Framework for Dataset Distillation
Zheng Zhou
Hong Zhao
Guangliang Cheng
Xiangtai Li
Shuchang Lyu
Wenquan Feng
Qi Zhao
DD
77
0
0
03 Jun 2024
DD-RobustBench: An Adversarial Robustness Benchmark for Dataset Distillation
Yifan Wu
Jiawei Du
Ping Liu
Yuewei Lin
Wenqing Cheng
Wei Xu
DD
AAML
68
5
0
20 Mar 2024
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
92
1
0
15 Mar 2024
Group Distributionally Robust Dataset Distillation with Risk Minimization
Saeed Vahidian
Mingyu Wang
Jianyang Gu
Vyacheslav Kungurtsev
Wei Jiang
Yiran Chen
OOD
DD
83
6
0
07 Feb 2024
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
Hansong Zhang
Shikun Li
Pengju Wang
Dan Zeng
Shiming Ge
DD
74
23
0
26 Dec 2023
Dataset Distillation via the Wasserstein Metric
Haoyang Liu
Yijiang Li
Tiancheng Xing
Vibhu Dalal
Luwei Li
Jingrui He
Haohan Wang
DD
96
14
0
30 Nov 2023
Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives
Haoyang Liu
Maheep Chaudhary
Haohan Wang
34
26
0
31 Jul 2023
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
65
12
0
04 Jul 2023
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective
Zeyuan Yin
Eric P. Xing
Zhiqiang Shen
DD
48
77
0
22 Jun 2023
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
58
9
0
05 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
120
26
0
03 May 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
83
76
0
11 Jan 2023
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
90
137
0
19 Nov 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
75
157
0
01 Jun 2022
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
172
388
0
22 Mar 2022
Dataset Condensation with Contrastive Signals
Saehyung Lee
Sanghyuk Chun
Sangwon Jung
Sangdoo Yun
Sung-Hoon Yoon
DD
44
99
0
07 Feb 2022
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
75
304
0
08 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
90
234
0
27 Jul 2021
Dataset Condensation with Differentiable Siamese Augmentation
Bo Zhao
Hakan Bilen
DD
260
300
0
16 Feb 2021
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
129
244
0
30 Oct 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
113
497
0
10 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
213
1,842
0
03 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
56
404
0
26 Feb 2020
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
81
987
0
29 Nov 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
129
135
0
06 Oct 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
71
211
0
21 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
147
2,038
0
08 Feb 2019
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
78
295
0
27 Nov 2018
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
72
319
0
23 Nov 2018
With Friends Like These, Who Needs Adversaries?
Saumya Jetley
Nicholas A. Lord
Philip Torr
AAML
51
70
0
11 Jul 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,185
0
01 Feb 2018
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
147
682
0
26 Nov 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
78
1,879
0
14 Aug 2017
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
48
272
0
17 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
136
807
0
28 Apr 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
67
239
0
19 Dec 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
261
8,552
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
112
1,740
0
24 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
102
3,960
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
148
4,895
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
92
3,072
0
14 Nov 2015
Distributional Smoothing with Virtual Adversarial Training
Takeru Miyato
S. Maeda
Masanori Koyama
Ken Nakae
S. Ishii
89
458
0
02 Jul 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
274
19,049
0
20 Dec 2014
1
2
Next