ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.09303
  4. Cited By
Rethinking Autoencoders for Medical Anomaly Detection from A Theoretical
  Perspective

Rethinking Autoencoders for Medical Anomaly Detection from A Theoretical Perspective

14 March 2024
Yu Cai
Hao Chen
Kwang-Ting Cheng
    MedIm
ArXivPDFHTML

Papers citing "Rethinking Autoencoders for Medical Anomaly Detection from A Theoretical Perspective"

5 / 5 papers shown
Title
Autoencoders for Anomaly Detection are Unreliable
Autoencoders for Anomaly Detection are Unreliable
Roel Bouman
Tom Heskes
63
1
0
23 Jan 2025
Dual-Distribution Discrepancy for Anomaly Detection in Chest X-Rays
Dual-Distribution Discrepancy for Anomaly Detection in Chest X-Rays
Yu Cai
Hao Chen
Xin Yang
Yu Zhou
Wuhan
27
17
0
08 Jun 2022
A Unified Model for Multi-class Anomaly Detection
A Unified Model for Multi-class Anomaly Detection
Zhiyuan You
Lei Cui
Yujun Shen
Kai Yang
Xin Lu
Yu Zheng
Xinyi Le
56
220
0
08 Jun 2022
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation
  and Radiogenomic Classification
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Ujjwal Baid
S. Ghodasara
S. Mohan
Michel Bilello
Evan Calabrese
...
M. Weber
A. Mahajan
Bjoern Menze
Adam Flanders
Spyridon Bakas
129
631
0
05 Jul 2021
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
422
16,944
0
20 Dec 2013
1