ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08796
  4. Cited By
Analog In-Memory Computing with Uncertainty Quantification for Efficient
  Edge-based Medical Imaging Segmentation

Analog In-Memory Computing with Uncertainty Quantification for Efficient Edge-based Medical Imaging Segmentation

1 February 2024
I. Hamzaoui
Hadjer Benmeziane
Zayneb Cherif
Kaoutar El Maghraoui
ArXivPDFHTML

Papers citing "Analog In-Memory Computing with Uncertainty Quantification for Efficient Edge-based Medical Imaging Segmentation"

1 / 1 papers shown
Title
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
363
75,888
0
18 May 2015
1