ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08796
20
0

Analog In-Memory Computing with Uncertainty Quantification for Efficient Edge-based Medical Imaging Segmentation

1 February 2024
I. Hamzaoui
Hadjer Benmeziane
Zayneb Cherif
Kaoutar El Maghraoui
ArXivPDFHTML
Abstract

This work investigates the role of the emerging Analog In-memory computing (AIMC) paradigm in enabling Medical AI analysis and improving the certainty of these models at the edge. It contrasts AIMC's efficiency with traditional digital computing's limitations in power, speed, and scalability. Our comprehensive evaluation focuses on brain tumor analysis, spleen segmentation, and nuclei detection. The study highlights the superior robustness of isotropic architectures, which exhibit a minimal accuracy drop (0.04) in analog-aware training, compared to significant drops (up to 0.15) in pyramidal structures. Additionally, the paper emphasizes IMC's effective data pipelining, reducing latency and increasing throughput as well as the exploitation of inherent noise within AIMC, strategically harnessed to augment model certainty.

View on arXiv
Comments on this paper