Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.19027
Cited By
How to Train your Antivirus: RL-based Hardening through the Problem-Space
29 February 2024
Jacopo Cortellazzi
Ilias Tsingenopoulos
B. Bosanský
Simone Aonzo
Davy Preuveneers
Wouter Joosen
Fabio Pierazzi
Lorenzo Cavallaro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"How to Train your Antivirus: RL-based Hardening through the Problem-Space"
18 / 18 papers shown
Title
Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance
Savino Dambra
Yufei Han
Simone Aonzo
Platon Kotzias
Antonino Vitale
Juan Caballero
Davide Balzarotti
Leyla Bilge
68
24
0
27 Jul 2023
Explaining Classifiers Trained on Raw Hierarchical Multiple-Instance Data
Tomás Pevný
Viliam Lisý
B. Bosanský
P. Somol
Michal Pěchouček
74
1
0
04 Aug 2022
On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks
Salijona Dyrmishi
Salah Ghamizi
Thibault Simonetto
Yves Le Traon
Maxime Cordy
AAML
67
18
0
07 Feb 2022
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
54
109
0
26 Feb 2021
Realizable Universal Adversarial Perturbations for Malware
Raphael Labaca-Castro
Luis Muñoz-González
Feargus Pendlebury
Gabi Dreo Rodosek
Fabio Pierazzi
Lorenzo Cavallaro
AAML
49
6
0
12 Feb 2021
Adversarial Examples in Constrained Domains
Ryan Sheatsley
Nicolas Papernot
Mike Weisman
Gunjan Verma
Patrick McDaniel
AAML
59
23
0
02 Nov 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
209
2,052
0
16 Apr 2020
Functionality-preserving Black-box Optimization of Adversarial Windows Malware
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
54
145
0
30 Mar 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
277
834
0
19 Feb 2020
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
91
1,838
0
06 May 2019
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
131
1,772
0
24 May 2018
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
73
210
0
26 Jan 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
130
1,409
0
08 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
217
1,842
0
30 Nov 2017
Malware Detection by Eating a Whole EXE
Edward Raff
Jon Barker
Jared Sylvester
Robert Brandon
Bryan Catanzaro
Charles K. Nicholas
65
545
0
25 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,069
0
19 Jun 2017
Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
Weiwei Hu
Ying Tan
GAN
73
461
0
20 Feb 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
1