ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16991
  4. Cited By
A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
  of Data

A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data

26 February 2024
Antonio Sclocchi
Alessandro Favero
M. Wyart
    DiffM
ArXivPDFHTML

Papers citing "A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data"

13 / 13 papers shown
Title
Emergence of Structure in Ensembles of Random Neural Networks
Emergence of Structure in Ensembles of Random Neural Networks
Luca Muscarnera
Luigi Loreti
Giovanni Todeschini
Alessio Fumagalli
Francesco Regazzoni
26
0
0
15 May 2025
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
M. Wyart
26
0
0
11 May 2025
Learning curves theory for hierarchically compositional data with power-law distributed features
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
M. Wyart
36
0
0
11 May 2025
Entropic Time Schedulers for Generative Diffusion Models
Entropic Time Schedulers for Generative Diffusion Models
Dejan Stancevic
Luca Ambrogioni
DiffM
OOD
51
0
0
18 Apr 2025
Understanding Classifier-Free Guidance: High-Dimensional Theory and Non-Linear Generalizations
Understanding Classifier-Free Guidance: High-Dimensional Theory and Non-Linear Generalizations
Krunoslav Lehman Pavasovic
Jakob Verbeek
Giulio Biroli
Marc Mézard
64
0
0
11 Feb 2025
Dynamic Negative Guidance of Diffusion Models
Dynamic Negative Guidance of Diffusion Models
Felix Koulischer
Johannes Deleu
G. Raya
T. Demeester
L. Ambrogioni
DiffM
49
2
0
03 Jan 2025
On learning higher-order cumulants in diffusion models
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
26
4
0
28 Oct 2024
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
M. Wyart
DiffM
33
3
0
17 Oct 2024
Learning Discrete Concepts in Latent Hierarchical Models
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Biwei Huang
Eric P. Xing
Yuejie Chi
Kun Zhang
52
4
0
01 Jun 2024
Cascade of phase transitions in the training of Energy-based models
Cascade of phase transitions in the training of Energy-based models
Dimitrios Bachtis
Giulio Biroli
A. Decelle
Beatriz Seoane
39
4
0
23 May 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and
  Diffusion in Generative Hierarchical Models
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
41
11
0
29 Apr 2024
Learning multi-scale local conditional probability models of images
Learning multi-scale local conditional probability models of images
Zahra Kadkhodaie
Florentin Guth
S. Mallat
Eero P. Simoncelli
DiffM
37
17
0
06 Mar 2023
Diffusion Models are Minimax Optimal Distribution Estimators
Diffusion Models are Minimax Optimal Distribution Estimators
Kazusato Oko
Shunta Akiyama
Taiji Suzuki
DiffM
72
85
0
03 Mar 2023
1