Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.15332
Cited By
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
23 February 2024
Bruno Gavranovic
Paul Lessard
Andrew Dudzik
Tamara von Glehn
J. G. Araújo
Petar Velickovic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Position: Categorical Deep Learning is an Algebraic Theory of All Architectures"
8 / 8 papers shown
Title
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Vincent Abbott
Kotaro Kamiya
Gerard Glowacki
Yu Atsumi
Gioele Zardini
Yoshihiro Maruyama
26
0
0
14 May 2025
Fundamental Components of Deep Learning: A category-theoretic approach
Bruno Gavranović
26
4
0
13 Mar 2024
Categorical semantics of compositional reinforcement learning
Georgios Bakirtzis
M. Savvas
Ufuk Topcu
CoGe
40
4
0
29 Aug 2022
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
70
26
0
06 Dec 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
197
746
0
03 Sep 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1