Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.14469
Cited By
Reimagining Anomalies: What If Anomalies Were Normal?
22 February 2024
Philipp Liznerski
Saurabh Varshneya
Ece Calikus
Sophie Fellenz
Marius Kloft
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reimagining Anomalies: What If Anomalies Were Normal?"
23 / 23 papers shown
Title
Deep Anomaly Detection on Tennessee Eastman Process Data
Fabian Hartung
Billy Joe Franks
Tobias Michels
Dennis Wagner
Philipp Liznerski
...
Stephan Mandt
Michael Bortz
Jakob Burger
Hans Hasse
Marius Kloft
39
6
0
10 Mar 2023
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
243
30,108
0
01 Mar 2022
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows
Denis A. Gudovskiy
Shun Ishizaka
Kazuki Kozuka
94
401
0
27 Jul 2021
Towards Total Recall in Industrial Anomaly Detection
Karsten Roth
Latha Pemula
J. Zepeda
Bernhard Schölkopf
Thomas Brox
Peter V. Gehler
UQCV
80
907
0
15 Jun 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
99
101
0
11 Jan 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
75
837
0
17 Nov 2020
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Tal Reiss
Niv Cohen
Liron Bergman
Yedid Hoshen
61
251
0
12 Oct 2020
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
104
797
0
24 Sep 2020
Large image datasets: A pyrrhic win for computer vision?
Vinay Uday Prabhu
Abeba Birhane
57
366
0
24 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
105
83
0
17 Mar 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
61
200
0
03 Feb 2020
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
92
217
0
18 Nov 2019
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
54
545
0
06 Jun 2019
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
177
1,476
0
11 Dec 2018
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
86
607
0
28 May 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
107
589
0
21 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,350
0
01 Nov 2017
Modulating early visual processing by language
H. D. Vries
Florian Strub
Jérémie Mary
Hugo Larochelle
Olivier Pietquin
Aaron Courville
106
489
0
02 Jul 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
278
2,262
0
24 Jun 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,518
0
11 Apr 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
268
19,929
0
07 Oct 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
326
7,980
0
23 May 2016
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
422
43,635
0
17 Sep 2014
1