Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.13989
Cited By
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
21 February 2024
Yongcun Song
Ziqi Wang
Enrique Zuazua
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning"
8 / 8 papers shown
Title
Distributed Event-Based Learning via ADMM
Güner Dilsad Er
Sebastian Trimpe
Michael Muehlebach
FedML
64
2
0
17 May 2024
Approximate and Weighted Data Reconstruction Attack in Federated Learning
Yongcun Song
Ziqi Wang
Enrique Zuazua
AAML
FedML
62
4
0
13 Aug 2023
FedADMM: A Federated Primal-Dual Algorithm Allowing Partial Participation
Han Wang
Siddartha Marella
James Anderson
FedML
32
39
0
28 Mar 2022
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
289
855
0
01 Mar 2021
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
43
1,321
0
15 Jul 2020
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
74
990
0
23 Jul 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
88
2,652
0
04 Feb 2019
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
234
17,328
0
17 Feb 2016
1