ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.13241
  4. Cited By
Federated Causal Discovery from Heterogeneous Data

Federated Causal Discovery from Heterogeneous Data

20 February 2024
Loka Li
Ignavier Ng
Gongxu Luo
Erdun Gao
Guan-Hong Chen
Tongliang Liu
Bin Gu
Kun Zhang
    FedML
ArXivPDFHTML

Papers citing "Federated Causal Discovery from Heterogeneous Data"

9 / 9 papers shown
Title
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Ignavier Ng
Erdun Gao
Kun Zhang
CML
51
21
0
04 Apr 2023
Efficient Neural Causal Discovery without Acyclicity Constraints
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
21
73
0
22 Jul 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To
  Game
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
40
138
0
26 Feb 2021
On the Convergence of Continuous Constrained Optimization for Structure
  Learning
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
59
38
0
23 Nov 2020
DAG-GNN: DAG Structure Learning with Graph Neural Networks
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
52
481
0
22 Apr 2019
Causal Discovery from Heterogeneous/Nonstationary Data with Independent
  Changes
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
Erdun Gao
Kun Zhang
Jiji Zhang
Joseph Ramsey
Ruben Sanchez-Romero
Clark Glymour
Bernhard Schölkopf
42
220
0
05 Mar 2019
Discovery and Visualization of Nonstationary Causal Models
Discovery and Visualization of Nonstationary Causal Models
Kun Zhang
Erdun Gao
Jiji Zhang
Bernhard Schölkopf
Clark Glymour
CML
371
13
0
27 Sep 2015
On the Error of Random Fourier Features
On the Error of Random Fourier Features
Danica J. Sutherland
J. Schneider
54
189
0
09 Jun 2015
Kernel-based Conditional Independence Test and Application in Causal
  Discovery
Kernel-based Conditional Independence Test and Application in Causal Discovery
Kun Zhang
J. Peters
Dominik Janzing
Bernhard Schölkopf
BDL
CML
64
618
0
14 Feb 2012
1