ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11953
  4. Cited By
Stealing the Invisible: Unveiling Pre-Trained CNN Models through
  Adversarial Examples and Timing Side-Channels

Stealing the Invisible: Unveiling Pre-Trained CNN Models through Adversarial Examples and Timing Side-Channels

19 February 2024
Shubhi Shukla
Manaar Alam
Pabitra Mitra
Debdeep Mukhopadhyay
    MLAU
    AAML
ArXivPDFHTML

Papers citing "Stealing the Invisible: Unveiling Pre-Trained CNN Models through Adversarial Examples and Timing Side-Channels"

23 / 23 papers shown
Title
The Early Bird Catches the Leak: Unveiling Timing Side Channels in LLM Serving Systems
The Early Bird Catches the Leak: Unveiling Timing Side Channels in LLM Serving Systems
Linke Song
Zixuan Pang
Wenhao Wang
Zihao Wang
XiaoFeng Wang
Hongbo Chen
Wei Song
Yier Jin
Dan Meng
Rui Hou
88
8
0
30 Sep 2024
Identifying Appropriate Intellectual Property Protection Mechanisms for
  Machine Learning Models: A Systematization of Watermarking, Fingerprinting,
  Model Access, and Attacks
Identifying Appropriate Intellectual Property Protection Mechanisms for Machine Learning Models: A Systematization of Watermarking, Fingerprinting, Model Access, and Attacks
Isabell Lederer
Rudolf Mayer
Andreas Rauber
74
19
0
22 Apr 2023
I Know What You Trained Last Summer: A Survey on Stealing Machine
  Learning Models and Defences
I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences
Daryna Oliynyk
Rudolf Mayer
Andreas Rauber
88
110
0
16 Jun 2022
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
203
1,801
0
18 Nov 2021
DeepSteal: Advanced Model Extractions Leveraging Efficient Weight
  Stealing in Memories
DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories
Adnan Siraj Rakin
Md Hafizul Islam Chowdhuryy
Fan Yao
Deliang Fan
AAML
MIACV
58
113
0
08 Nov 2021
Visual Transformers: Token-based Image Representation and Processing for
  Computer Vision
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
Bichen Wu
Chenfeng Xu
Xiaoliang Dai
Alvin Wan
Peizhao Zhang
Zhicheng Yan
Masayoshi Tomizuka
Joseph E. Gonzalez
Kurt Keutzer
Peter Vajda
ViT
94
558
0
05 Jun 2020
MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient
  Estimation
MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation
Sanjay Kariyappa
A. Prakash
Moinuddin K. Qureshi
AAML
57
152
0
06 May 2020
Model Weight Theft With Just Noise Inputs: The Curious Case of the
  Petulant Attacker
Model Weight Theft With Just Noise Inputs: The Curious Case of the Petulant Attacker
Nicholas Roberts
Vinay Uday Prabhu
Matthew McAteer
51
18
0
19 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
359
42,299
0
03 Dec 2019
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna
Gaurav Singh Tomar
Ankur P. Parikh
Nicolas Papernot
Mohit Iyyer
MIACV
MLAU
99
200
0
27 Oct 2019
Reverse-Engineering Deep ReLU Networks
Reverse-Engineering Deep ReLU Networks
David Rolnick
Konrad Paul Kording
62
103
0
02 Oct 2019
Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN
  Architectures
Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures
Mengjia Yan
Christopher W. Fletcher
Josep Torrellas
MIACV
FedML
61
247
0
14 Aug 2018
MnasNet: Platform-Aware Neural Architecture Search for Mobile
MnasNet: Platform-Aware Neural Architecture Search for Mobile
Mingxing Tan
Bo Chen
Ruoming Pang
Vijay Vasudevan
Mark Sandler
Andrew G. Howard
Quoc V. Le
MQ
114
3,004
0
31 Jul 2018
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
150
4,970
0
30 Jul 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
169
19,204
0
13 Jan 2018
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
476
10,305
0
16 Nov 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
133
1,731
0
08 Nov 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
713
36,708
0
25 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
310
7,971
0
23 May 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
139
7,465
0
24 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
700
27,303
0
02 Dec 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
399
43,589
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.3K
100,213
0
04 Sep 2014
1