Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.11179
Cited By
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
17 February 2024
J. Hauth
C. Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes"
5 / 5 papers shown
Title
Deep learning and multi-level featurization of graph representations of microstructural data
Reese E. Jones
C. Safta
A. Frankel
AI4CE
38
4
0
29 Sep 2022
Design of experiments for the calibration of history-dependent models via deep reinforcement learning and an enhanced Kalman filter
Ruben Villarreal
Nikolaos N. Vlassis
Nhon N. Phan
Tommie A. Catanach
Reese E. Jones
N. Trask
S. Kramer
WaiChing Sun
OffRL
25
11
0
27 Sep 2022
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
50
68
0
09 Feb 2020
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
227
7,903
0
13 Jun 2015
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
175
2,577
0
28 Mar 2008
1