ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11156
  4. Cited By
Efficient Low-Rank Matrix Estimation, Experimental Design, and
  Arm-Set-Dependent Low-Rank Bandits

Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits

17 February 2024
Kyoungseok Jang
Chicheng Zhang
Kwang-Sung Jun
ArXivPDFHTML

Papers citing "Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits"

5 / 5 papers shown
Title
A Unified Regularization Approach to High-Dimensional Generalized Tensor Bandits
A Unified Regularization Approach to High-Dimensional Generalized Tensor Bandits
Jiannan Li
Yiyang Yang
Shaojie Tang
Yao Wang
38
0
0
18 Jan 2025
Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems
Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems
Yue Kang
Cho-Jui Hsieh
T. C. Lee
37
18
0
14 Jan 2024
PopArt: Efficient Sparse Regression and Experimental Design for Optimal
  Sparse Linear Bandits
PopArt: Efficient Sparse Regression and Experimental Design for Optimal Sparse Linear Bandits
Kyoungseok Jang
Chicheng Zhang
Kwang-Sung Jun
36
13
0
25 Oct 2022
Design of $c$-Optimal Experiments for High dimensional Linear Models
Design of ccc-Optimal Experiments for High dimensional Linear Models
Hamid Eftekhari
Moulinath Banerjee
Yaácov Ritov
29
2
0
23 Oct 2020
On Verifiable Sufficient Conditions for Sparse Signal Recovery via
  $\ell_1$ Minimization
On Verifiable Sufficient Conditions for Sparse Signal Recovery via ℓ1\ell_1ℓ1​ Minimization
A. Juditsky
A. Nemirovski
106
142
0
16 Sep 2008
1