ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.10762
  4. Cited By
On Explaining Unfairness: An Overview

On Explaining Unfairness: An Overview

16 February 2024
Christos Fragkathoulas
Vasiliki Papanikou
Danae Pla Karidi
E. Pitoura
    XAI
    FaML
ArXivPDFHTML

Papers citing "On Explaining Unfairness: An Overview"

24 / 24 papers shown
Title
GLOBE-CE: A Translation-Based Approach for Global Counterfactual
  Explanations
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
61
18
0
26 May 2023
Fairness and Explainability: Bridging the Gap Towards Fair Model
  Explanations
Fairness and Explainability: Bridging the Gap Towards Fair Model Explanations
Yuying Zhao
Yu Wang
Hanyu Wang
FaML
58
16
0
07 Dec 2022
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
88
32
0
21 Oct 2022
On Structural Explanation of Bias in Graph Neural Networks
On Structural Explanation of Bias in Graph Neural Networks
Yushun Dong
Song Wang
Yu Wang
Hanyu Wang
Jundong Li
65
24
0
24 Jun 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of
  Explanations
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
62
78
0
06 May 2022
FMP: Toward Fair Graph Message Passing against Topology Bias
FMP: Toward Fair Graph Message Passing against Topology Bias
Zhimeng Jiang
Xiaotian Han
Chao Fan
Zirui Liu
Na Zou
Ali Mostafavi
Xia Hu
40
48
0
08 Feb 2022
Interpretable Data-Based Explanations for Fairness Debugging
Interpretable Data-Based Explanations for Fairness Debugging
Romila Pradhan
Jiongli Zhu
Boris Glavic
Babak Salimi
44
54
0
17 Dec 2021
A survey on datasets for fairness-aware machine learning
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
59
247
0
01 Oct 2021
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path
  Decomposition
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path Decomposition
Weishen Pan
Sen Cui
Jiang Bian
Changshui Zhang
Fei Wang
CML
FaML
84
35
0
11 Aug 2021
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks
Yushun Dong
Ninghao Liu
B. Jalaeian
Jundong Li
94
121
0
11 Aug 2021
A Clarification of the Nuances in the Fairness Metrics Landscape
A Clarification of the Nuances in the Fairness Metrics Landscape
Alessandro Castelnovo
Riccardo Crupi
Greta Greco
D. Regoli
Ilaria Giuseppina Penco
A. Cosentini
FaML
42
186
0
01 Jun 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive
  Counterfactuals
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
60
107
0
22 Mar 2021
The KL-Divergence between a Graph Model and its Fair I-Projection as a
  Fairness Regularizer
The KL-Divergence between a Graph Model and its Fair I-Projection as a Fairness Regularizer
Maarten Buyl
T. D. Bie
38
25
0
02 Mar 2021
Towards a Unified Framework for Fair and Stable Graph Representation
  Learning
Towards a Unified Framework for Fair and Stable Graph Representation Learning
Chirag Agarwal
Himabindu Lakkaraju
Marinka Zitnik
162
160
0
25 Feb 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
89
226
0
25 Feb 2021
Explainability for fair machine learning
Explainability for fair machine learning
T. Begley
Tobias Schwedes
Christopher Frye
Ilya Feige
FaML
FedML
80
47
0
14 Oct 2020
On the Fairness of Causal Algorithmic Recourse
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
Amir-Hossein Karimi
Umang Bhatt
Isabel Valera
Adrian Weller
Bernhard Schölkopf
FaML
104
85
0
13 Oct 2020
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
90
635
0
04 Oct 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
44
340
0
14 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,251
0
22 Oct 2019
Operationalizing Individual Fairness with Pairwise Fair Representations
Operationalizing Individual Fairness with Pairwise Fair Representations
Preethi Lahoti
Krishna P. Gummadi
Gerhard Weikum
FaML
67
101
0
02 Jul 2019
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,954
0
06 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,350
0
01 Nov 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,815
0
22 May 2017
1