Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.10580
Cited By
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
16 February 2024
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation"
8 / 8 papers shown
Title
Enhancing Monocular Depth Estimation with Multi-Source Auxiliary Tasks
Alessio Quercia
Erenus Yildiz
Zhuo Cao
Kai Krajsek
Abigail Morrison
Ira Assent
Hanno Scharr
56
0
0
22 Jan 2025
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
D. Wolf
Alexander Braun
Markus Ulrich
89
0
0
18 Dec 2024
UNIC: Universal Classification Models via Multi-teacher Distillation
Mert Bulent Sariyildiz
Philippe Weinzaepfel
Thomas Lucas
Diane Larlus
Yannis Kalantidis
37
6
0
09 Aug 2024
Density Uncertainty Quantification with NeRF-Ensembles: Impact of Data and Scene Constraints
M. Jäger
Steven Landgraf
B. Jutzi
32
2
0
22 Dec 2023
Iterative Distillation for Better Uncertainty Estimates in Multitask Emotion Recognition
Didan Deng
Liang Wu
Bertram E. Shi
46
32
0
21 Jul 2021
SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from Monocular images
Lei He
Jiwen Lu
Guanghui Wang
Shiyu Song
Jie Zhou
44
69
0
19 Jan 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1