ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.10575
  4. Cited By
Symbolic Autoencoding for Self-Supervised Sequence Learning

Symbolic Autoencoding for Self-Supervised Sequence Learning

16 February 2024
Mohammad Hossein Amani
Nicolas Mario Baldwin
Amin Mansouri
Martin Josifoski
Maxime Peyrard
Robert West
ArXiv (abs)PDFHTML

Papers citing "Symbolic Autoencoding for Self-Supervised Sequence Learning"

13 / 13 papers shown
Title
Codebook Features: Sparse and Discrete Interpretability for Neural
  Networks
Codebook Features: Sparse and Discrete Interpretability for Neural Networks
Alex Tamkin
Mohammad Taufeeque
Noah D. Goodman
76
29
0
26 Oct 2023
Adaptive Discrete Communication Bottlenecks with Dynamic Vector
  Quantization
Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization
Dianbo Liu
Alex Lamb
Xu Ji
Pascal Junior Tikeng Notsawo
Michael C. Mozer
Yoshua Bengio
Kenji Kawaguchi
43
16
0
02 Feb 2022
COGS: A Compositional Generalization Challenge Based on Semantic
  Interpretation
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
Najoung Kim
Tal Linzen
CoGe
48
280
0
12 Oct 2020
Low-resource Languages: A Review of Past Work and Future Challenges
Low-resource Languages: A Review of Past Work and Future Challenges
Alexandre Magueresse
Vincent Carles
Evan Heetderks
71
176
0
12 Jun 2020
The State and Fate of Linguistic Diversity and Inclusion in the NLP
  World
The State and Fate of Linguistic Diversity and Inclusion in the NLP World
Pratik M. Joshi
Sebastin Santy
A. Budhiraja
Kalika Bali
Monojit Choudhury
LMTD
117
853
0
20 Apr 2020
Measuring Compositional Generalization: A Comprehensive Method on
  Realistic Data
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
Daniel Keysers
Nathanael Scharli
Nathan Scales
Hylke Buisman
Daniel Furrer
...
Tibor Tihon
Dmitry Tsarkov
Tianlin Li
Marc van Zee
Olivier Bousquet
CoGe
68
353
0
20 Dec 2019
SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for
  Unsupervised Abstractive Sentence Compression
SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression
Christos Baziotis
Ion Androutsopoulos
Ioannis Konstas
Alexandros Potamianos
56
83
0
07 Apr 2019
Jump to better conclusions: SCAN both left and right
Jump to better conclusions: SCAN both left and right
Jasmijn Bastings
Marco Baroni
Jason Weston
Kyunghyun Cho
Douwe Kiela
54
62
0
12 Sep 2018
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
Vincent Fortuin
Matthias Huser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
BDLAI4TS
52
139
0
06 Jun 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
226
5,019
0
02 Nov 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
339
5,364
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
196
2,533
0
02 Nov 2016
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GANSSLBDL
88
2,742
0
20 Jun 2014
1