Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.10039
Cited By
Feature Accentuation: Revealing 'What' Features Respond to in Natural Images
15 February 2024
Christopher Hamblin
Thomas Fel
Srijani Saha
Talia Konkle
George A. Alvarez
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Feature Accentuation: Revealing 'What' Features Respond to in Natural Images"
6 / 6 papers shown
Title
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
111
7
0
06 Feb 2025
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations
Amin Ghiasi
Hamid Kazemi
Steven Reich
Chen Zhu
Micah Goldblum
Tom Goldstein
42
15
0
31 Jan 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
114
58
0
07 Nov 2021
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
252
426
0
15 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1