Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.09478
Cited By
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
13 February 2024
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Reconstruction Attacks and Defenses: A Systematic Evaluation"
43 / 43 papers shown
Title
Optimal Defenses Against Gradient Reconstruction Attacks
Yuxiao Chen
Gamze Gürsoy
Qi Lei
FedML
AAML
81
0
0
06 Nov 2024
Multi-step Jailbreaking Privacy Attacks on ChatGPT
Haoran Li
Dadi Guo
Wei Fan
Mingshi Xu
Jie Huang
Fanpu Meng
Yangqiu Song
SILM
91
341
0
11 Apr 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
52
40
0
14 Feb 2023
Reconstructing Training Data from Model Gradient, Provably
Zihan Wang
Jason D. Lee
Qi Lei
FedML
55
25
0
07 Dec 2022
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
78
29
0
12 Sep 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
76
138
0
15 Jun 2022
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Zhuohang Li
Jiaxin Zhang
Lu Liu
Jian-Dong Liu
FedML
69
118
0
29 Mar 2022
Defending against Reconstruction Attacks with Rényi Differential Privacy
Pierre Stock
I. Shilov
Ilya Mironov
Alexandre Sablayrolles
AAML
SILM
MIACV
63
40
0
15 Feb 2022
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
180
97
0
01 Feb 2022
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
Laurens van der Maaten
125
54
0
28 Jan 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
97
186
0
06 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
71
274
0
30 Nov 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
50
42
0
08 Nov 2021
Gradient Inversion with Generative Image Prior
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
58
155
0
28 Oct 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
112
148
0
25 Oct 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
78
472
0
15 Apr 2021
SAPAG: A Self-Adaptive Privacy Attack From Gradients
Yijue Wang
Jieren Deng
Danyi Guo
Chenghong Wang
Xianrui Meng
Hang Liu
Caiwen Ding
Sanguthevar Rajasekaran
31
35
0
14 Sep 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
68
148
0
22 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
100
1,228
0
31 Mar 2020
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
121
1,612
0
01 Nov 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
94
2,204
0
21 Jun 2019
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
91
858
0
18 Apr 2018
Group Normalization
Yuxin Wu
Kaiming He
228
3,654
0
22 Mar 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
377
11,790
0
11 Jan 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
120
1,294
0
20 Dec 2017
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
122
3,151
0
29 Nov 2017
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
289
8,905
0
21 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
278
9,760
0
25 Oct 2017
meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting
Xu Sun
Xuancheng Ren
Shuming Ma
Houfeng Wang
62
157
0
19 Jun 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
170
336
0
10 Jun 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
105
942
0
19 Jan 2017
Practical Secure Aggregation for Federated Learning on User-Held Data
Keith Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. B. McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
FedML
74
501
0
14 Nov 2016
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
77
474
0
11 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
303
4,643
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
203
6,121
0
01 Jul 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
337
7,984
0
23 May 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
192
1,941
0
25 Feb 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
401
17,468
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,133
0
18 May 2015
Tensor Factorization via Matrix Factorization
Volodymyr Kuleshov
Arun Tejasvi Chaganty
Percy Liang
93
85
0
29 Jan 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
453
7,661
0
03 Jul 2012
1