Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.08845
Cited By
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
13 February 2024
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
Jose Miguel Hernandez-Lobato
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation"
18 / 18 papers shown
Title
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Zhifeng Hao
78
7
0
31 Dec 2024
Invariant Learning via Probability of Sufficient and Necessary Causes
Mengyue Yang
Zhen Fang
Yonggang Zhang
Yali Du
Furui Liu
Jean-François Ton
Jianhong Wang
Jun Wang
OODD
72
13
0
22 Sep 2023
Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning
Juntao Tan
Shijie Geng
Zuohui Fu
Yingqiang Ge
Shuyuan Xu
Yunqi Li
Yongfeng Zhang
61
111
0
17 Feb 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
40
175
0
14 Feb 2022
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
50
64
0
27 Mar 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
141
145
0
05 Feb 2021
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
128
838
0
16 Sep 2020
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
128
1,314
0
10 Mar 2019
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
254
8,856
0
25 Aug 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
975
21,815
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,517
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
169
2,878
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
585
28,999
0
09 Sep 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.0K
16,931
0
16 Feb 2016
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
232
4,665
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
295
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
530
15,861
0
12 Nov 2013
1