ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08082
  4. Cited By
Score-based generative models break the curse of dimensionality in
  learning a family of sub-Gaussian probability distributions

Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions

12 February 2024
Frank Cole
Yulong Lu
    DiffM
ArXivPDFHTML

Papers citing "Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions"

11 / 11 papers shown
Title
Breaking the curse of dimensionality in structured density estimation
Breaking the curse of dimensionality in structured density estimation
Robert A. Vandermeulen
Wai Ming Tai
Bryon Aragam
31
0
0
10 Oct 2024
Provable In-Context Learning of Linear Systems and Linear Elliptic PDEs
  with Transformers
Provable In-Context Learning of Linear Systems and Linear Elliptic PDEs with Transformers
Frank Cole
Yulong Lu
Riley OÑeill
Tianhao Zhang
48
2
0
18 Sep 2024
Optimal score estimation via empirical Bayes smoothing
Optimal score estimation via empirical Bayes smoothing
Andre Wibisono
Yihong Wu
Kaylee Yingxi Yang
54
20
0
12 Feb 2024
To smooth a cloud or to pin it down: Guarantees and Insights on Score
  Matching in Denoising Diffusion Models
To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models
Francisco Vargas
Teodora Reu
A. Kerekes
Michael M Bronstein
DiffM
35
1
0
16 May 2023
Diffusion Models are Minimax Optimal Distribution Estimators
Diffusion Models are Minimax Optimal Distribution Estimators
Kazusato Oko
Shunta Akiyama
Taiji Suzuki
DiffM
72
85
0
03 Mar 2023
Convergence of score-based generative modeling for general data
  distributions
Convergence of score-based generative modeling for general data distributions
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
191
128
0
26 Sep 2022
Diffusion Models in Vision: A Survey
Diffusion Models in Vision: A Survey
Florinel-Alin Croitoru
Vlad Hondru
Radu Tudor Ionescu
M. Shah
DiffM
VLM
MedIm
197
1,143
0
10 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Tengjiao Wang
Ming-Hsuan Yang
DiffM
MedIm
224
1,304
0
02 Sep 2022
Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk
Ivan Rubachev
A. Voynov
Valentin Khrulkov
Artem Babenko
DiffM
VLM
195
516
0
06 Dec 2021
Dual Training of Energy-Based Models with Overparametrized Shallow
  Neural Networks
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
35
6
0
11 Jul 2021
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
  with $ \ell^1 $ and $ \ell^0 $ Controls
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with ℓ1 \ell^1 ℓ1 and ℓ0 \ell^0 ℓ0 Controls
Jason M. Klusowski
Andrew R. Barron
130
142
0
26 Jul 2016
1