Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.06855
Cited By
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
10 February 2024
Muthuraman Chidambaram
Rong Ge
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"For Better or For Worse? Learning Minimum Variance Features With Label Augmentation"
41 / 41 papers shown
Title
On the Limitations of Temperature Scaling for Distributions with Overlaps
Muthuraman Chidambaram
Rong Ge
UQCV
52
4
0
01 Jun 2023
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
Junsoo Oh
Chulee Yun
48
6
0
01 Jun 2023
The Benefits of Mixup for Feature Learning
Difan Zou
Yuan Cao
Yuan-Fang Li
Quanquan Gu
MLT
16
20
0
15 Mar 2023
Scaling Vision Transformers to 22 Billion Parameters
Mostafa Dehghani
Josip Djolonga
Basil Mustafa
Piotr Padlewski
Jonathan Heek
...
Mario Luvcić
Xiaohua Zhai
Daniel Keysers
Jeremiah Harmsen
N. Houlsby
MLLM
128
585
0
10 Feb 2023
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Muthuraman Chidambaram
Xiang Wang
Chenwei Wu
Rong Ge
MLT
53
9
0
24 Oct 2022
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective
Chanwoo Park
Sangdoo Yun
Sanghyuk Chun
AAML
51
32
0
21 Aug 2022
Data Augmentation vs. Equivariant Networks: A Theory of Generalization on Dynamics Forecasting
Rui Wang
Robin Walters
Rose Yu
33
14
0
19 Jun 2022
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
108
953
1
10 Mar 2022
Data Augmentation as Feature Manipulation
Ruoqi Shen
Sébastien Bubeck
Suriya Gunasekar
MLT
34
16
0
03 Mar 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
43
17
0
24 Feb 2022
Towards Understanding the Data Dependency of Mixup-style Training
Muthuraman Chidambaram
Xiang Wang
Yuzheng Hu
Chenwei Wu
Rong Ge
UQCV
63
24
0
14 Oct 2021
Noisy Feature Mixup
Soon Hoe Lim
N. Benjamin Erichson
Francisco Utrera
Winnie Xu
Michael W. Mahoney
AAML
73
37
0
05 Oct 2021
Mixup Decoding for Diverse Machine Translation
Jicheng Li
Pengzhi Gao
Xuanfu Wu
Yang Feng
Zhongjun He
Hua Wu
Haifeng Wang
43
14
0
08 Sep 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Diversifying Dialog Generation via Adaptive Label Smoothing
Yida Wang
Yinhe Zheng
Yong Jiang
Minlie Huang
51
37
0
30 May 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
78
90
0
25 Feb 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
45
67
0
11 Feb 2021
Understanding Instance-Level Label Noise: Disparate Impacts and Treatments
Yang Liu
NoLa
16
35
0
10 Feb 2021
How Data Augmentation affects Optimization for Linear Regression
Boris Hanin
Yi Sun
42
16
0
21 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
64
247
0
09 Oct 2020
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim
Wonho Choo
Hyun Oh Song
AAML
55
387
0
15 Sep 2020
Towards Understanding Label Smoothing
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
UQCV
28
41
0
20 Jun 2020
SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization
A. Uddin
Sirazam Monira
Wheemyung Shin
TaeChoong Chung
Sung-Ho Bae
37
228
0
02 Jun 2020
On the Generalization Effects of Linear Transformations in Data Augmentation
Sen Wu
Hongyang R. Zhang
Gregory Valiant
Christopher Ré
35
77
0
02 May 2020
Does label smoothing mitigate label noise?
Michal Lukasik
Srinadh Bhojanapalli
A. Menon
Surinder Kumar
NoLa
108
348
0
05 Mar 2020
Regularization via Structural Label Smoothing
Weizhi Li
Gautam Dasarathy
Visar Berisha
UQCV
42
51
0
07 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
277
42,038
0
03 Dec 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
191
3,458
0
30 Sep 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
155
2,190
0
05 Jul 2019
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
137
1,931
0
06 Jun 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
62
535
0
27 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
581
4,735
0
13 May 2019
Does Data Augmentation Lead to Positive Margin?
Shashank Rajput
Zhili Feng
Zachary B. Charles
Po-Ling Loh
Dimitris Papailiopoulos
33
38
0
08 May 2019
MixUp as Locally Linear Out-Of-Manifold Regularization
Hongyu Guo
Yongyi Mao
Richong Zhang
48
321
0
07 Sep 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
90
192
0
16 Mar 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
74
908
0
27 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
243
9,687
0
25 Oct 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
453
129,831
0
12 Jun 2017
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
114
1,133
0
23 Jan 2017
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
497
27,231
0
02 Dec 2015
1