ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.05945
  4. Cited By
Eliminating Information Leakage in Hard Concept Bottleneck Models with
  Supervised, Hierarchical Concept Learning

Eliminating Information Leakage in Hard Concept Bottleneck Models with Supervised, Hierarchical Concept Learning

3 February 2024
Ao Sun
Yuanyuan Yuan
Pingchuan Ma
Shuai Wang
ArXivPDFHTML

Papers citing "Eliminating Information Leakage in Hard Concept Bottleneck Models with Supervised, Hierarchical Concept Learning"

13 / 13 papers shown
Title
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance
Divyansh Srivastava
Beatriz Cabrero-Daniel
Christian Berger
VLM
118
12
0
17 Jan 2025
Label-Free Concept Bottleneck Models
Label-Free Concept Bottleneck Models
Tuomas P. Oikarinen
Subhro Das
Lam M. Nguyen
Tsui-Wei Weng
69
173
0
12 Apr 2023
Causality-based Neural Network Repair
Causality-based Neural Network Repair
Bing-Jie Sun
Jun Sun
Hong Long Pham
Jie Shi
47
79
0
20 Apr 2022
Promises and Pitfalls of Black-Box Concept Learning Models
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
75
95
0
24 Jun 2021
Concept Bottleneck Models
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
94
818
0
09 Jul 2020
GANSpace: Discovering Interpretable GAN Controls
GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen
Aaron Hertzmann
J. Lehtinen
Sylvain Paris
109
902
0
06 Apr 2020
Interpreting the Latent Space of GANs for Semantic Face Editing
Interpreting the Latent Space of GANs for Semantic Face Editing
Yujun Shen
Jinjin Gu
Xiaoou Tang
Bolei Zhou
CVBM
GAN
115
1,120
0
25 Jul 2019
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
802
21,760
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
159
3,865
0
10 Apr 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
246
19,929
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
854
16,891
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
221
9,298
0
14 Dec 2015
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
244
7,279
0
20 Dec 2013
1