ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.05468
  4. Cited By
Implicit Diffusion: Efficient Optimization through Stochastic Sampling

Implicit Diffusion: Efficient Optimization through Stochastic Sampling

8 February 2024
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
ArXivPDFHTML

Papers citing "Implicit Diffusion: Efficient Optimization through Stochastic Sampling"

19 / 19 papers shown
Title
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Oussama Zekri
Nicolas Boullé
DiffM
68
3
0
03 Feb 2025
Bayesian Experimental Design via Contrastive Diffusions
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
30
0
0
15 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
35
2
0
13 Oct 2024
Attention layers provably solve single-location regression
Attention layers provably solve single-location regression
P. Marion
Raphael Berthier
Gérard Biau
Claire Boyer
140
2
0
02 Oct 2024
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise
  Optimization
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization
L. Eyring
Shyamgopal Karthik
Karsten Roth
Alexey Dosovitskiy
Zeynep Akata
78
17
0
06 Jun 2024
AdjointDEIS: Efficient Gradients for Diffusion Models
AdjointDEIS: Efficient Gradients for Diffusion Models
Zander Blasingame
Chen Liu
DiffM
49
2
0
23 May 2024
Gradient Guidance for Diffusion Models: An Optimization Perspective
Gradient Guidance for Diffusion Models: An Optimization Perspective
Yingqing Guo
Hui Yuan
Yukang Yang
Minshuo Chen
Mengdi Wang
27
20
0
23 Apr 2024
Functional Bilevel Optimization for Machine Learning
Functional Bilevel Optimization for Machine Learning
Ieva Petrulionyte
Julien Mairal
Michael Arbel
51
2
0
29 Mar 2024
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
  Control
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control
Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
N. Diamant
Alex Tseng
Tommaso Biancalani
Sergey Levine
42
42
0
23 Feb 2024
One-step differentiation of iterative algorithms
One-step differentiation of iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
69
13
0
23 May 2023
End-to-End Diffusion Latent Optimization Improves Classifier Guidance
End-to-End Diffusion Latent Optimization Improves Classifier Guidance
Bram Wallace
Akash Gokul
Stefano Ermon
Nikhil Naik
124
70
0
23 Mar 2023
A Forward Propagation Algorithm for Online Optimization of Nonlinear
  Stochastic Differential Equations
A Forward Propagation Algorithm for Online Optimization of Nonlinear Stochastic Differential Equations
Ziheng Wang
Justin A. Sirignano
64
3
0
10 Jul 2022
A framework for bilevel optimization that enables stochastic and global
  variance reduction algorithms
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
Mathieu Dagréou
Pierre Ablin
Samuel Vaiter
Thomas Moreau
139
96
0
31 Jan 2022
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Michael Arbel
Julien Mairal
105
58
0
29 Nov 2021
Fine-Tuning Language Models from Human Preferences
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
280
1,595
0
18 Sep 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
716
0
13 Jun 2018
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
321
75,834
0
18 May 2015
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1