Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.05050
Cited By
Federated Learning Can Find Friends That Are Advantageous
7 February 2024
N. Tupitsa
Samuel Horváth
Martin Takávc
Eduard A. Gorbunov
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning Can Find Friends That Are Advantageous"
8 / 8 papers shown
Title
Collaborative and Efficient Personalization with Mixtures of Adaptors
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
44
2
0
04 Oct 2024
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
Nurbek Tastan
Samuel Horváth
Martin Takáč
Karthik Nandakumar
FedML
57
0
0
03 Oct 2024
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
86
35
0
24 Jul 2022
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
Mathieu Dagréou
Pierre Ablin
Samuel Vaiter
Thomas Moreau
139
96
0
31 Jan 2022
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
411
0
14 Jul 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
326
0
19 Mar 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1