ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04453
  4. Cited By
The Potential of AutoML for Recommender Systems

The Potential of AutoML for Recommender Systems

6 February 2024
Tobias Vente
Joeran Beel
ArXiv (abs)PDFHTML

Papers citing "The Potential of AutoML for Recommender Systems"

10 / 10 papers shown
Title
MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for
  Medical Image Analysis
MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
Jiancheng Yang
Rui Shi
Bingbing Ni
VLM
90
304
0
28 Oct 2020
Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with
  Tree of Parzens Estimator (TPE) Optimization
Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimization
Rohan Anand
Joeran Beel
21
19
0
19 Aug 2020
AutoRec: An Automated Recommender System
AutoRec: An Automated Recommender System
Ting-Hsiang Wang
Qingquan Song
Xiaotian Han
Zirui Liu
Haifeng Jin
Xia Hu
61
21
0
26 Jun 2020
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
118
92
0
24 Jun 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
218
628
0
13 Mar 2020
FLAML: A Fast and Lightweight AutoML Library
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
76
203
0
12 Nov 2019
Generating Personalized Recipes from Historical User Preferences
Generating Personalized Recipes from Historical User Preferences
Bodhisattwa Prasad Majumder
Shuyang Li
Jianmo Ni
Julian McAuley
60
114
0
31 Aug 2019
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural
  Recommendation Approaches
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches
Maurizio Ferrari Dacrema
Paolo Cremonesi
Dietmar Jannach
50
586
0
16 Jul 2019
Auto-Keras: An Efficient Neural Architecture Search System
Auto-Keras: An Efficient Neural Architecture Search System
Haifeng Jin
Qingquan Song
Xia Hu
107
808
0
27 Jun 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li Li
Song Han
95
1,347
0
10 Feb 2018
1