Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.04453
Cited By
The Potential of AutoML for Recommender Systems
6 February 2024
Tobias Vente
Joeran Beel
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Potential of AutoML for Recommender Systems"
10 / 10 papers shown
Title
MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
Jiancheng Yang
Rui Shi
Bingbing Ni
VLM
90
304
0
28 Oct 2020
Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimization
Rohan Anand
Joeran Beel
21
19
0
19 Aug 2020
AutoRec: An Automated Recommender System
Ting-Hsiang Wang
Qingquan Song
Xiaotian Han
Zirui Liu
Haifeng Jin
Xia Hu
61
21
0
26 Jun 2020
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
118
92
0
24 Jun 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
218
628
0
13 Mar 2020
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
76
203
0
12 Nov 2019
Generating Personalized Recipes from Historical User Preferences
Bodhisattwa Prasad Majumder
Shuyang Li
Jianmo Ni
Julian McAuley
60
114
0
31 Aug 2019
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches
Maurizio Ferrari Dacrema
Paolo Cremonesi
Dietmar Jannach
50
586
0
16 Jul 2019
Auto-Keras: An Efficient Neural Architecture Search System
Haifeng Jin
Qingquan Song
Xia Hu
107
808
0
27 Jun 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li Li
Song Han
95
1,347
0
10 Feb 2018
1