ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04211
  4. Cited By
Variational Shapley Network: A Probabilistic Approach to Self-Explaining
  Shapley values with Uncertainty Quantification

Variational Shapley Network: A Probabilistic Approach to Self-Explaining Shapley values with Uncertainty Quantification

6 February 2024
Mert Ketenci
Inigo Urteaga
Victor Alfonso Rodriguez
Noémie Elhadad
A. Perotte
    FAtt
ArXivPDFHTML

Papers citing "Variational Shapley Network: A Probabilistic Approach to Self-Explaining Shapley values with Uncertainty Quantification"

12 / 12 papers shown
Title
Post hoc Explanations may be Ineffective for Detecting Unknown Spurious
  Correlation
Post hoc Explanations may be Ineffective for Detecting Unknown Spurious Correlation
Julius Adebayo
M. Muelly
H. Abelson
Been Kim
44
86
0
09 Dec 2022
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
79
171
0
10 Mar 2022
The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
75
210
0
11 Feb 2022
Improving KernelSHAP: Practical Shapley Value Estimation via Linear
  Regression
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
54
170
0
02 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
83
248
0
21 Nov 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
54
162
0
11 Aug 2020
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
70
526
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
122
940
0
20 Jun 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
967
21,815
0
22 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
189
1,351
0
19 May 2017
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
242
4,778
0
04 Jan 2016
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
158
867
0
12 Feb 2015
1