ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.03028
  4. Cited By
Functional SDE approximation inspired by a deep operator network architecture

Functional SDE approximation inspired by a deep operator network architecture

5 February 2024
Martin Eigel
Charles Miranda
ArXivPDFHTML

Papers citing "Functional SDE approximation inspired by a deep operator network architecture"

11 / 11 papers shown
Title
Approximating Langevin Monte Carlo with ResNet-like Neural Network
  architectures
Approximating Langevin Monte Carlo with ResNet-like Neural Network architectures
Charles Miranda
Janina Enrica Schutte
David Sommer
Martin Eigel
48
3
0
06 Nov 2023
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Tengjiao Wang
Ming-Hsuan Yang
DiffM
MedIm
321
1,374
0
02 Sep 2022
Physics-Informed Deep Neural Operator Networks
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
68
104
0
08 Jul 2022
Exponential Convergence of Deep Operator Networks for Elliptic Partial
  Differential Equations
Exponential Convergence of Deep Operator Networks for Elliptic Partial Differential Equations
C. Marcati
Christoph Schwab
58
39
0
15 Dec 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
455
2,384
0
18 Oct 2020
Faster Wasserstein Distance Estimation with the Sinkhorn Divergence
Faster Wasserstein Distance Estimation with the Sinkhorn Divergence
Lénaïc Chizat
Pierre Roussillon
Flavien Léger
François-Xavier Vialard
Gabriel Peyré
OT
48
114
0
15 Jun 2020
Solving the Kolmogorov PDE by means of deep learning
Solving the Kolmogorov PDE by means of deep learning
C. Beck
S. Becker
Philipp Grohs
Nor Jaafari
Arnulf Jentzen
46
95
0
01 Jun 2018
Optimal approximation of piecewise smooth functions using deep ReLU
  neural networks
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
P. Petersen
Felix Voigtländer
195
475
0
15 Sep 2017
Deep learning-based numerical methods for high-dimensional parabolic
  partial differential equations and backward stochastic differential equations
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
115
797
0
15 Jun 2017
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
182
4,251
0
04 Jun 2013
1