ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02452
  4. Cited By
XAI-CF -- Examining the Role of Explainable Artificial Intelligence in
  Cyber Forensics

XAI-CF -- Examining the Role of Explainable Artificial Intelligence in Cyber Forensics

4 February 2024
Shahid Alam
Zeynep Altıparmak
ArXivPDFHTML

Papers citing "XAI-CF -- Examining the Role of Explainable Artificial Intelligence in Cyber Forensics"

50 / 52 papers shown
Title
SIFT -- File Fragment Classification Without Metadata
SIFT -- File Fragment Classification Without Metadata
Shahid Alam
18
2
0
05 Oct 2023
ProtoExplorer: Interpretable Forensic Analysis of Deepfake Videos using
  Prototype Exploration and Refinement
ProtoExplorer: Interpretable Forensic Analysis of Deepfake Videos using Prototype Exploration and Refinement
M. D. L. D. Bouter
J. Pardo
Z. Geradts
M. Worring
48
10
0
20 Sep 2023
Adversarial attacks and defenses in explainable artificial intelligence:
  A survey
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
64
66
0
06 Jun 2023
A Survey on Explainable Artificial Intelligence for Cybersecurity
A Survey on Explainable Artificial Intelligence for Cybersecurity
Gaith Rjoub
Jamal Bentahar
Omar Abdel Wahab
R. Mizouni
Alyssa Song
Robin Cohen
Hadi Otrok
Azzam Mourad
49
29
0
07 Mar 2023
Explainable Artificial Intelligence Applications in Cyber Security:
  State-of-the-Art in Research
Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research
Zhibo Zhang
H. A. Hamadi
Ernesto Damiani
C. Yeun
Fatma Taher
AAML
72
156
0
31 Aug 2022
SAFARI: Versatile and Efficient Evaluations for Robustness of
  Interpretability
SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability
Wei Huang
Xingyu Zhao
Gao Jin
Xiaowei Huang
AAML
50
30
0
19 Aug 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
225
30,089
0
01 Mar 2022
An Objective Metric for Explainable AI: How and Why to Estimate the
  Degree of Explainability
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
53
31
0
11 Sep 2021
Research trends, challenges, and emerging topics of digital forensics: A
  review of reviews
Research trends, challenges, and emerging topics of digital forensics: A review of reviews
Fran Casino
Thomas K. Dasaklis
G. Spathoulas
M. Anagnostopoulos
Amrita Ghosal
István Bor̈oc̈z
A. Solanas
Mauro Conti
Constantinos Patsakis
44
82
0
10 Aug 2021
Fooling Partial Dependence via Data Poisoning
Fooling Partial Dependence via Data Poisoning
Hubert Baniecki
Wojciech Kretowicz
P. Biecek
AAML
47
23
0
26 May 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to
  Rectify in the Evaluation of Counterfactual XAI Techniques
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
58
146
0
26 Feb 2021
Assessing Information Quality in IoT Forensics: Theoretical Framework
  and Model Implementation
Assessing Information Quality in IoT Forensics: Theoretical Framework and Model Implementation
Federico Costantini
Fausto Galvan
M. Stefani
Sebastiano Battiato
25
3
0
29 Dec 2020
Is there a role for statistics in artificial intelligence?
Is there a role for statistics in artificial intelligence?
Sarah Friedrich
G. Antes
S. Behr
Harald Binder
W. Brannath
...
H. Leitgöb
Markus Pauly
A. Steland
A. Wilhelm
T. Friede
34
49
0
13 Sep 2020
The role of explainability in creating trustworthy artificial
  intelligence for health care: a comprehensive survey of the terminology,
  design choices, and evaluation strategies
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
78
464
0
31 Jul 2020
On quantitative aspects of model interpretability
On quantitative aspects of model interpretability
An-phi Nguyen
María Rodríguez Martínez
43
114
0
15 Jul 2020
Explainable Artificial Intelligence: a Systematic Review
Explainable Artificial Intelligence: a Systematic Review
Giulia Vilone
Luca Longo
XAI
61
270
0
29 May 2020
Why Fairness Cannot Be Automated: Bridging the Gap Between EU
  Non-Discrimination Law and AI
Why Fairness Cannot Be Automated: Bridging the Gap Between EU Non-Discrimination Law and AI
Sandra Wachter
Brent Mittelstadt
Chris Russell
FaML
50
280
0
12 May 2020
Dense Passage Retrieval for Open-Domain Question Answering
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin
Barlas Oğuz
Sewon Min
Patrick Lewis
Ledell Yu Wu
Sergey Edunov
Danqi Chen
Wen-tau Yih
RALM
154
3,739
0
10 Apr 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
56
156
0
16 Mar 2020
Measuring the Quality of Explanations: The System Causability Scale
  (SCS). Comparing Human and Machine Explanations
Measuring the Quality of Explanations: The System Causability Scale (SCS). Comparing Human and Machine Explanations
Andreas Holzinger
André M. Carrington
Heimo Muller
LRM
XAI
ELM
66
308
0
19 Dec 2019
Founding The Domain of AI Forensics
Founding The Domain of AI Forensics
I. Baggili
Vahid Behzadan
29
16
0
11 Dec 2019
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
56
254
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
66
814
0
06 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
113
6,235
0
22 Oct 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI
  Explainability Techniques
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
57
392
0
06 Sep 2019
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Nils Reimers
Iryna Gurevych
1.0K
12,129
0
27 Aug 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
534
4,333
0
23 Aug 2019
Multilingual Universal Sentence Encoder for Semantic Retrieval
Multilingual Universal Sentence Encoder for Semantic Retrieval
Yinfei Yang
Daniel Cer
Amin Ahmad
Mandy Guo
Jax Law
...
Steve Yuan
Chris Tar
Yun-hsuan Sung
B. Strope
R. Kurzweil
3DV
64
477
0
09 Jul 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of
  Key Ideas and Publications, and Bibliography for Explainable AI
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
47
286
0
05 Feb 2019
Metrics for Explainable AI: Challenges and Prospects
Metrics for Explainable AI: Challenges and Prospects
R. Hoffman
Shane T. Mueller
Gary Klein
Jordan Litman
XAI
72
725
0
11 Dec 2018
Towards the Development of Realistic Botnet Dataset in the Internet of
  Things for Network Forensic Analytics: Bot-IoT Dataset
Towards the Development of Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT Dataset
Nickolaos Koroniotis
Nour Moustafa
E. Sitnikova
B. Turnbull
44
1,219
0
02 Nov 2018
Stakeholders in Explainable AI
Stakeholders in Explainable AI
Alun D. Preece
Daniel Harborne
Dave Braines
Richard J. Tomsett
Supriyo Chakraborty
38
155
0
29 Sep 2018
Transparency and Explanation in Deep Reinforcement Learning Neural
  Networks
Transparency and Explanation in Deep Reinforcement Learning Neural Networks
R. Iyer
Yuezhang Li
Huao Li
M. Lewis
R. Sundar
Katia Sycara
42
174
0
17 Sep 2018
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Aditya K
Slawomir Grzonkowski
NhienAn Lekhac
32
27
0
03 Aug 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
123
437
0
28 May 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
120
3,938
0
06 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,348
0
01 Nov 2017
What Does Explainable AI Really Mean? A New Conceptualization of
  Perspectives
What Does Explainable AI Really Mean? A New Conceptualization of Perspectives
Derek Doran
Sarah Schulz
Tarek R. Besold
XAI
66
438
0
02 Oct 2017
Interpretable & Explorable Approximations of Black Box Models
Interpretable & Explorable Approximations of Black Box Models
Himabindu Lakkaraju
Ece Kamar
R. Caruana
J. Leskovec
FAtt
57
254
0
04 Jul 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
863
21,815
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,517
0
11 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
371
3,776
0
28 Feb 2017
Forensic Analysis of the ChatSecure Instant Messaging Application on
  Android Smartphones
Forensic Analysis of the ChatSecure Instant Messaging Application on Android Smartphones
C. Anglano
M. Canonico
Marco Guazzone
26
52
0
21 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
252
19,929
0
07 Oct 2016
Interpretable Two-level Boolean Rule Learning for Classification
Interpretable Two-level Boolean Rule Learning for Classification
Guolong Su
Dennis L. Wei
Kush R. Varshney
Dmitry Malioutov
56
52
0
18 Jun 2016
Making Tree Ensembles Interpretable
Making Tree Ensembles Interpretable
Satoshi Hara
K. Hayashi
55
71
0
17 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
917
16,931
0
16 Feb 2016
Interpretable classifiers using rules and Bayesian analysis: Building a
  better stroke prediction model
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
60
743
0
05 Nov 2015
12
Next