ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02287
  4. Cited By
Future Directions in the Theory of Graph Machine Learning

Future Directions in the Theory of Graph Machine Learning

3 February 2024
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
    AI4CE
ArXivPDFHTML

Papers citing "Future Directions in the Theory of Graph Machine Learning"

15 / 15 papers shown
Title
Weisfeiler-Leman at the margin: When more expressivity matters
Weisfeiler-Leman at the margin: When more expressivity matters
Billy J. Franks
Christopher Morris
A. Velingker
Floris Geerts
58
10
0
12 Feb 2024
GraphText: Graph Reasoning in Text Space
GraphText: Graph Reasoning in Text Space
Jianan Zhao
Le Zhuo
Yikang Shen
Meng Qu
Kai Liu
Michael M. Bronstein
Zhaocheng Zhu
Jian Tang
109
71
0
02 Oct 2023
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
Matthieu Cordonnier
Nicolas Keriven
Nicolas M Tremblay
Samuel Vaiter
GNN
49
7
0
21 Apr 2023
The Descriptive Complexity of Graph Neural Networks
The Descriptive Complexity of Graph Neural Networks
Martin Grohe
GNN
39
22
0
08 Mar 2023
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph
  Neural Networks
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks
Ching-Yao Chuang
Stefanie Jegelka
OOD
67
35
0
04 Oct 2022
The CLRS Algorithmic Reasoning Benchmark
The CLRS Algorithmic Reasoning Benchmark
Petar Velivcković
Adria Puigdomenech Badia
David Budden
Razvan Pascanu
Andrea Banino
Mikhail Dashevskiy
R. Hadsell
Charles Blundell
163
88
0
31 May 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
81
37
0
30 May 2022
Generalization Analysis of Message Passing Neural Networks on Large
  Random Graphs
Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
Sohir Maskey
Ron Levie
Yunseok Lee
Gitta Kutyniok
GNN
83
54
0
01 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
102
224
0
30 Jan 2022
Keeping it Simple: Language Models can learn Complex Molecular
  Distributions
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
133
142
0
06 Dec 2021
Neural Network Weights Do Not Converge to Stationary Points: An
  Invariant Measure Perspective
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
J.N. Zhang
Haochuan Li
S. Sra
Ali Jadbabaie
66
9
0
12 Oct 2021
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
172
123
0
17 Oct 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
184
172
0
09 Mar 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
206
747
0
03 Sep 2019
1