ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02229
  4. Cited By
Vanilla Bayesian Optimization Performs Great in High Dimensions
v1v2v3v4 (latest)

Vanilla Bayesian Optimization Performs Great in High Dimensions

3 February 2024
Carl Hvarfner
E. Hellsten
Luigi Nardi
ArXiv (abs)PDFHTML

Papers citing "Vanilla Bayesian Optimization Performs Great in High Dimensions"

25 / 25 papers shown
Title
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Sebastian Ament
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
80
81
0
08 Jan 2025
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
129
7
0
30 Jun 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
85
1
0
24 Jun 2024
Are Random Decompositions all we need in High Dimensional Bayesian
  Optimisation?
Are Random Decompositions all we need in High Dimensional Bayesian Optimisation?
Juliusz Ziomek
Haitham Bou-Ammar
84
24
0
30 Jan 2023
Monte Carlo Tree Search based Variable Selection for High Dimensional
  Bayesian Optimization
Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization
Lei Song
Ke Xue
Xiaobin Huang
Chaojun Qian
99
34
0
04 Oct 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
54
3
0
04 Aug 2022
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
83
39
0
04 Nov 2021
Local policy search with Bayesian optimization
Local policy search with Bayesian optimization
Sarah Müller
Alexander von Rohr
Sebastian Trimpe
BDL
52
40
0
22 Jun 2021
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
72
128
0
01 Jul 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian
  Optimization
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
93
115
0
31 Jan 2020
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
86
473
0
03 Oct 2019
Adaptive and Safe Bayesian Optimization in High Dimensions via
  One-Dimensional Subspaces
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
74
149
0
08 Feb 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
157
1,057
0
18 Oct 2018
Bayesian Optimization of Combinatorial Structures
Bayesian Optimization of Combinatorial Structures
Ricardo Baptista
Matthias Poloczek
83
137
0
22 Jun 2018
High-Dimensional Bayesian Optimization via Additive Models with
  Overlapping Groups
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
Volkan Cevher
68
115
0
20 Feb 2018
High Dimensional Bayesian Optimization Using Dropout
High Dimensional Bayesian Optimization Using Dropout
Cheng Li
Sunil R. Gupta
Santu Rana
Vu Nguyen
Svetha Venkatesh
A. Shilton
45
130
0
15 Feb 2018
Batched High-dimensional Bayesian Optimization via Structural Kernel
  Learning
Batched High-dimensional Bayesian Optimization via Structural Kernel Learning
Zi Wang
Chengtao Li
Stefanie Jegelka
Pushmeet Kohli
66
124
0
06 Mar 2017
Fast methods for training Gaussian processes on large data sets
Fast methods for training Gaussian processes on large data sets
C. Moore
A. J. Chua
C. Berry
J. Gair
GP
45
41
0
05 Apr 2016
Active Learning of Linear Embeddings for Gaussian Processes
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
100
92
0
24 Oct 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
170
445
0
09 Jan 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
359
7,954
0
13 Jun 2012
Additive Gaussian Processes
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
99
330
0
19 Dec 2011
Convergence rates of efficient global optimization algorithms
Convergence rates of efficient global optimization algorithms
Adam D. Bull
129
641
0
18 Jan 2011
Bounding Standard Gaussian Tail Probabilities
Bounding Standard Gaussian Tail Probabilities
L. Duembgen
100
55
0
09 Dec 2010
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
149
1,623
0
21 Dec 2009
1