ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01446
54
9

Guidance Graph Optimization for Lifelong Multi-Agent Path Finding

2 February 2024
Yulun Zhang
He Jiang
Varun Bhatt
Stefanos Nikolaidis
Jiaoyang Li
ArXivPDFHTML
Abstract

We study how to use guidance to improve the throughput of lifelong Multi-Agent Path Finding (MAPF). Previous studies have demonstrated that, while incorporating guidance, such as highways, can accelerate MAPF algorithms, this often results in a trade-off with solution quality. In addition, how to generate good guidance automatically remains largely unexplored, with current methods falling short of surpassing manually designed ones. In this work, we introduce the guidance graph as a versatile representation of guidance for lifelong MAPF, framing Guidance Graph Optimization as the task of optimizing its edge weights. We present two GGO algorithms to automatically generate guidance for arbitrary lifelong MAPF algorithms and maps. The first method directly optimizes edge weights, while the second method optimizes an update model capable of generating edge weights. Empirically, we show that (1) our guidance graphs improve the throughput of three representative lifelong MAPF algorithms in eight benchmark maps, and (2) our update model can generate guidance graphs for as large as 93×9193 \times 9193×91 maps and as many as 3,000 agents. We include the source code at: \url{https://github.com/lunjohnzhang/ggo_public}. All optimized guidance graphs are available online at: \url{https://yulunzhang.net/publication/zhang2024ggo}.

View on arXiv
Comments on this paper