Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.01350
Cited By
pFedMoE: Data-Level Personalization with Mixture of Experts for Model-Heterogeneous Personalized Federated Learning
2 February 2024
Liping Yi
Han Yu
Chao Ren
Heng-Ming Zhang
Gang Wang
Xiaoguang Liu
Xiaoxiao Li
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"pFedMoE: Data-Level Personalization with Mixture of Experts for Model-Heterogeneous Personalized Federated Learning"
18 / 18 papers shown
Title
FedGH: Heterogeneous Federated Learning with Generalized Global Header
Liping Yi
Gang Wang
Xiaoguang Liu
Zhuan Shi
Han Yu
FedML
102
78
0
23 Mar 2023
FedClassAvg: Local Representation Learning for Personalized Federated Learning on Heterogeneous Neural Networks
Jaehee Jang
Heonseok Ha
Dahuin Jung
Sungroh Yoon
FedML
83
41
0
25 Oct 2022
Fed2: Feature-Aligned Federated Learning
Fuxun Yu
Weishan Zhang
Zhuwei Qin
Zirui Xu
Di Wang
Chenchen Liu
Zhi Tian
Xiang Chen
FedML
70
76
0
28 Nov 2021
FedGEMS: Federated Learning of Larger Server Models via Selective Knowledge Fusion
Sijie Cheng
Jingwen Wu
Yanghua Xiao
Yang Liu
Yang Liu
FedML
46
68
0
21 Oct 2021
FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
Lan Zhang
Dapeng Wu
Xiaoyong Yuan
FedML
60
48
0
08 Sep 2021
FedKD: Communication Efficient Federated Learning via Knowledge Distillation
Chuhan Wu
Fangzhao Wu
Lingjuan Lyu
Yongfeng Huang
Xing Xie
FedML
75
388
0
30 Aug 2021
Federated Mixture of Experts
M. Reisser
Christos Louizos
E. Gavves
Max Welling
FedML
71
24
0
14 Jul 2021
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
80
658
0
20 May 2021
PFL-MoE: Personalized Federated Learning Based on Mixture of Experts
Binbin Guo
Yuan Mei
Danyang Xiao
Weigang Wu
Ye Yin
Hongli Chang
MoE
85
22
0
31 Dec 2020
Specialized federated learning using a mixture of experts
Edvin Listo Zec
Olof Mogren
John Martinsson
L. R. Sütfeld
D. Gillblad
FedML
57
29
0
05 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
96
556
0
03 Oct 2020
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results
Xiaoxiao Li
Yufeng Gu
Nicha Dvornek
Lawrence H. Staib
P. Ventola
James S. Duncan
FedML
OOD
76
354
0
16 Jan 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
117
562
0
06 Jan 2020
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
77
168
0
24 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
256
6,261
0
10 Dec 2019
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
95
854
0
08 Oct 2019
Differentiable Learning-to-Normalize via Switchable Normalization
Ping Luo
Jiamin Ren
Zhanglin Peng
Ruimao Zhang
Jingyu Li
51
177
0
28 Jun 2018
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
1