Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.00654
Cited By
v1
v2 (latest)
Improving the accuracy of freight mode choice models: A case study using the 2017 CFS PUF data set and ensemble learning techniques
1 February 2024
Diyi Liu
Hyeonsup Lim
M. Uddin
Yuandong Liu
Lee D. Han
Ho-Ling Hwang
Shih-Miao Chin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improving the accuracy of freight mode choice models: A case study using the 2017 CFS PUF data set and ensemble learning techniques"
5 / 5 papers shown
Title
Modeling Freight Mode Choice Using Machine Learning Classifiers: A Comparative Study Using the Commodity Flow Survey (CFS) Data
M. Uddin
Sabreena Anowar
Naveen Eluru
28
11
0
01 Feb 2024
Kaggle forecasting competitions: An overlooked learning opportunity
Casper Solheim Bojer
Jens Peder Meldgaard
AI4TS
74
207
0
16 Sep 2020
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Using Big Data to Enhance the Bosch Production Line Performance: A Kaggle Challenge
Ankita Mangal
Nishant Kumar
44
55
0
29 Dec 2016
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
88
839
0
16 Jun 2016
1