Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.00326
Cited By
v1
v2
v3 (latest)
PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks
1 February 2024
Sizhuang He
Bowen Li
Yuhan Chen
P. Perdikaris
AI4CE
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Github (308★)
Papers citing
"PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks"
32 / 32 papers shown
Title
Mollifier Layers: Enabling Efficient High-Order Derivatives in Inverse PDE Learning
Ananyae Kumar Bhartari
Vinayak Vinayak
Vivek B Shenoy
AI4CE
190
0
0
16 May 2025
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
95
0
0
27 Mar 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
87
2
0
04 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
94
7
0
02 Oct 2024
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
245
563
0
30 Apr 2024
An Expert's Guide to Training Physics-informed Neural Networks
Sizhuang He
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
90
107
0
16 Aug 2023
About optimal loss function for training physics-informed neural networks under respecting causality
V. A. Es'kin
Danil V. Davydov
Ekaterina D. Egorova
Alexey O. Malkhanov
Mikhail A. Akhukov
Mikhail E. Smorkalov
PINN
89
7
0
05 Apr 2023
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
86
377
0
21 Jul 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
143
203
0
14 Mar 2022
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
466
15,665
0
20 Dec 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
66
58
0
21 Oct 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
Suryanarayana Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
71
83
0
02 Jul 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
121
234
0
26 Apr 2021
Conditional physics informed neural networks
A. Kovacs
L. Exl
Alexander Kornell
J. Fischbacher
Markus Hovorka
...
N. Sakuma
Akihito Kinoshita
T. Shoji
A. Kato
T. Schrefl
PINN
55
44
0
06 Apr 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
130
128
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,444
0
18 Oct 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
84
459
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
916
0
28 Jul 2020
A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks
S. Dong
Naxian Ni
79
137
0
15 Jul 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
77
225
0
09 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
71
266
0
29 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
124
2,440
0
18 Jun 2020
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
14,986
0
18 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
165
2,571
0
17 Jun 2020
Transfer learning based multi-fidelity physics informed deep neural network
S. Chakraborty
PINN
OOD
AI4CE
72
165
0
19 May 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
168
538
0
11 Mar 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,150
0
08 Oct 2019
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
61
193
0
08 Jul 2019
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
78
610
0
04 Jul 2019
On the Universality of Invariant Networks
Haggai Maron
Ethan Fetaya
Nimrod Segol
Y. Lipman
OOD
155
240
0
27 Jan 2019
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,192
0
16 Mar 2016
1