82
0

High-performance Racing on Unmapped Tracks using Local Maps

Abstract

Map-based methods for autonomous racing estimate the vehicle's location, which is used to follow a high-level plan. While map-based optimisation methods demonstrate high-performance results, they are limited by requiring a map of the environment. In contrast, mapless methods can operate in unmapped contexts since they directly process raw sensor data (often LiDAR) to calculate commands. However, a major limitation in mapless methods is poor performance due to a lack of optimisation. In response, we propose the local map framework that uses easily extractable, low-level features to build local maps of the visible region that form the input to optimisation-based controllers. Our local map generation extracts the visible racetrack boundaries and calculates a centreline and track widths used for planning. We evaluate our method for simulated F1Tenth autonomous racing using a two-stage trajectory optimisation and tracking strategy and a model predictive controller. Our method achieves lap times that are 8.8% faster than the Follow-The-Gap method and 3.22% faster than end-to-end neural networks due to the optimisation resulting in a faster speed profile. The local map planner is 3.28% slower than global methods that have access to an entire map of the track that can be used for planning. Critically, our approach enables high-speed autonomous racing on unmapped tracks, achieving performance similar to global methods without requiring a track map.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.