ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.17541
  4. Cited By
Towards Understanding Variants of Invariant Risk Minimization through
  the Lens of Calibration

Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration

31 January 2024
Kotaro Yoshida
Hiroki Naganuma
ArXivPDFHTML

Papers citing "Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration"

13 / 13 papers shown
Title
Robust Invariant Representation Learning by Distribution Extrapolation
Robust Invariant Representation Learning by Distribution Extrapolation
Kotaro Yoshida
Konstantinos Slavakis
OOD
70
0
0
22 May 2025
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
158
3
0
17 Jul 2023
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
Yihua Zhang
Pranay Sharma
Parikshit Ram
Min-Fong Hong
Kush R. Varshney
Sijia Liu
55
13
0
04 Mar 2023
Optimal Representations for Covariate Shift
Optimal Representations for Covariate Shift
Yangjun Ruan
Yann Dubois
Chris J. Maddison
OOD
91
69
0
31 Dec 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
98
365
0
15 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
57
268
0
11 Jun 2021
Out of Distribution Generalization in Machine Learning
Out of Distribution Generalization in Machine Learning
Martín Arjovsky
OOD
CML
40
93
0
03 Mar 2021
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
76
1,143
0
02 Jul 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
201
2,049
0
16 Apr 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
62
16
0
27 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
81
461
0
21 Feb 2020
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
159
1,691
0
06 Jun 2019
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,484
0
28 May 2015
1