ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.15024
  4. Cited By
SliceGPT: Compress Large Language Models by Deleting Rows and Columns

SliceGPT: Compress Large Language Models by Deleting Rows and Columns

26 January 2024
Saleh Ashkboos
Maximilian L. Croci
Marcelo Gennari do Nascimento
Torsten Hoefler
James Hensman
    VLM
ArXivPDFHTML

Papers citing "SliceGPT: Compress Large Language Models by Deleting Rows and Columns"

40 / 40 papers shown
Title
SPAP: Structured Pruning via Alternating Optimization and Penalty Methods
SPAP: Structured Pruning via Alternating Optimization and Penalty Methods
Hanyu Hu
Xiaoming Yuan
48
0
0
06 May 2025
FineScope : Precision Pruning for Domain-Specialized Large Language Models Using SAE-Guided Self-Data Cultivation
FineScope : Precision Pruning for Domain-Specialized Large Language Models Using SAE-Guided Self-Data Cultivation
Chaitali Bhattacharyya
Yeseong Kim
45
0
0
01 May 2025
Efficient LLMs with AMP: Attention Heads and MLP Pruning
Efficient LLMs with AMP: Attention Heads and MLP Pruning
Leandro Giusti Mugnaini
Bruno Yamamoto
Lucas Lauton de Alcantara
Victor Zacarias
Edson Bollis
Lucas Pellicer
A. H. R. Costa
Artur Jordao
47
0
0
29 Apr 2025
Gradual Binary Search and Dimension Expansion : A general method for activation quantization in LLMs
Gradual Binary Search and Dimension Expansion : A general method for activation quantization in LLMs
Lucas Maisonnave
Cyril Moineau
Olivier Bichler
Fabrice Rastello
MQ
42
0
0
18 Apr 2025
When Reasoning Meets Compression: Benchmarking Compressed Large Reasoning Models on Complex Reasoning Tasks
When Reasoning Meets Compression: Benchmarking Compressed Large Reasoning Models on Complex Reasoning Tasks
Nan Zhang
Yusen Zhang
Prasenjit Mitra
Rui Zhang
MQ
LRM
51
2
0
02 Apr 2025
Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
Raman Dutt
Harleen Hanspal
Guoxuan Xia
Petru-Daniel Tudosiu
Alexander Black
Yongxin Yang
Steven G. McDonagh
Sarah Parisot
MoE
40
0
0
28 Mar 2025
Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
Hung-Yueh Chiang
Chi-chih Chang
N. Frumkin
Kai-Chiang Wu
Mohamed S. Abdelfattah
Diana Marculescu
MQ
143
0
0
28 Mar 2025
Adaptive Rank Allocation: Speeding Up Modern Transformers with RaNA Adapters
Adaptive Rank Allocation: Speeding Up Modern Transformers with RaNA Adapters
Roberto Garcia
Jerry Liu
Daniel Sorvisto
Sabri Eyuboglu
90
0
0
23 Mar 2025
Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Yuanze Li
Shihao Yuan
Haolin Wang
Qizhang Li
Ming-Yu Liu
Chen Xu
Guangming Shi
Wangmeng Zuo
56
0
0
17 Mar 2025
Balcony: A Lightweight Approach to Dynamic Inference of Generative Language Models
Benyamin Jamialahmadi
Parsa Kavehzadeh
Mehdi Rezagholizadeh
Parsa Farinneya
Hossein Rajabzadeh
A. Jafari
Boxing Chen
Marzieh S. Tahaei
42
0
0
06 Mar 2025
How can representation dimension dominate structurally pruned LLMs?
Mingxue Xu
Lisa Alazraki
Danilo P. Mandic
56
0
0
06 Mar 2025
Dynamic Low-Rank Sparse Adaptation for Large Language Models
Dynamic Low-Rank Sparse Adaptation for Large Language Models
Weizhong Huang
Yuxin Zhang
Xiawu Zheng
Y. Liu
Jing Lin
Yiwu Yao
Rongrong Ji
95
1
0
21 Feb 2025
SpinQuant: LLM quantization with learned rotations
SpinQuant: LLM quantization with learned rotations
Zechun Liu
Changsheng Zhao
Igor Fedorov
Bilge Soran
Dhruv Choudhary
Raghuraman Krishnamoorthi
Vikas Chandra
Yuandong Tian
Tijmen Blankevoort
MQ
131
84
0
21 Feb 2025
EvoP: Robust LLM Inference via Evolutionary Pruning
EvoP: Robust LLM Inference via Evolutionary Pruning
Shangyu Wu
Hongchao Du
Ying Xiong
Shuai Chen
Tei-Wei Kuo
Nan Guan
Chun Jason Xue
34
1
0
19 Feb 2025
DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs
Minxuan Lv
Zhenpeng Su
Leiyu Pan
Yizhe Xiong
Zijia Lin
...
Guiguang Ding
Cheng Luo
Di Zhang
Kun Gai
Songlin Hu
MoE
41
0
0
18 Feb 2025
Forget the Data and Fine-Tuning! Just Fold the Network to Compress
Forget the Data and Fine-Tuning! Just Fold the Network to Compress
Dong Wang
Haris Šikić
Lothar Thiele
O. Saukh
59
0
0
17 Feb 2025
Skrr: Skip and Re-use Text Encoder Layers for Memory Efficient Text-to-Image Generation
Skrr: Skip and Re-use Text Encoder Layers for Memory Efficient Text-to-Image Generation
H. Seo
Wongi Jeong
Jae-sun Seo
Se Young Chun
60
0
0
12 Feb 2025
EfficientLLM: Scalable Pruning-Aware Pretraining for Architecture-Agnostic Edge Language Models
EfficientLLM: Scalable Pruning-Aware Pretraining for Architecture-Agnostic Edge Language Models
Xingrun Xing
Zheng Liu
Shitao Xiao
Boyan Gao
Yiming Liang
Wanpeng Zhang
Haokun Lin
Guoqi Li
Jiajun Zhang
LRM
61
1
0
10 Feb 2025
Progressive Binarization with Semi-Structured Pruning for LLMs
Progressive Binarization with Semi-Structured Pruning for LLMs
X. Yan
Tianao Zhang
Zhiteng Li
Yulun Zhang
MQ
54
0
0
03 Feb 2025
Mamba-Shedder: Post-Transformer Compression for Efficient Selective Structured State Space Models
Mamba-Shedder: Post-Transformer Compression for Efficient Selective Structured State Space Models
J. P. Muñoz
Jinjie Yuan
Nilesh Jain
Mamba
72
1
0
28 Jan 2025
You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning
You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning
Ayan Sengupta
Siddhant Chaudhary
Tanmoy Chakraborty
44
3
0
25 Jan 2025
Merging Feed-Forward Sublayers for Compressed Transformers
Merging Feed-Forward Sublayers for Compressed Transformers
Neha Verma
Kenton W. Murray
Kevin Duh
AI4CE
50
0
0
10 Jan 2025
CURing Large Models: Compression via CUR Decomposition
CURing Large Models: Compression via CUR Decomposition
Sanghyeon Park
Soo-Mook Moon
41
0
0
08 Jan 2025
GQSA: Group Quantization and Sparsity for Accelerating Large Language Model Inference
GQSA: Group Quantization and Sparsity for Accelerating Large Language Model Inference
Chao Zeng
Songwei Liu
Shu Yang
Fangmin Chen
Xing Mei
Lean Fu
MQ
42
0
0
23 Dec 2024
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Akhiad Bercovich
Tomer Ronen
Talor Abramovich
Nir Ailon
Nave Assaf
...
Ido Shahaf
Oren Tropp
Omer Ullman Argov
Ran Zilberstein
Ran El-Yaniv
77
1
0
28 Nov 2024
Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Elia Cunegatti
Leonardo Lucio Custode
Giovanni Iacca
47
0
0
11 Nov 2024
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
Shih-yang Liu
Huck Yang
Nai Chit Fung
Nai Chit Fung
Hongxu Yin
...
Jan Kautz
Yu-Chun Wang
Pavlo Molchanov
Min-Hung Chen
Min-Hung Chen
MQ
31
0
0
28 Oct 2024
OATS: Outlier-Aware Pruning Through Sparse and Low Rank Decomposition
OATS: Outlier-Aware Pruning Through Sparse and Low Rank Decomposition
Stephen Zhang
V. Papyan
VLM
48
1
0
20 Sep 2024
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
Tianyi Chen
Xiaoyi Qu
David Aponte
Colby R. Banbury
Jongwoo Ko
Tianyu Ding
Yong Ma
Vladimir Lyapunov
Ilya Zharkov
Luming Liang
80
1
0
11 Sep 2024
MoDeGPT: Modular Decomposition for Large Language Model Compression
MoDeGPT: Modular Decomposition for Large Language Model Compression
Chi-Heng Lin
Shangqian Gao
James Seale Smith
Abhishek Patel
Shikhar Tuli
Yilin Shen
Hongxia Jin
Yen-Chang Hsu
71
6
0
19 Aug 2024
A deeper look at depth pruning of LLMs
A deeper look at depth pruning of LLMs
Shoaib Ahmed Siddiqui
Xin Dong
Greg Heinrich
Thomas Breuel
Jan Kautz
David M. Krueger
Pavlo Molchanov
40
7
0
23 Jul 2024
Compact Language Models via Pruning and Knowledge Distillation
Compact Language Models via Pruning and Knowledge Distillation
Saurav Muralidharan
Sharath Turuvekere Sreenivas
Raviraj Joshi
Marcin Chochowski
M. Patwary
M. Shoeybi
Bryan Catanzaro
Jan Kautz
Pavlo Molchanov
SyDa
MQ
39
37
0
19 Jul 2024
BitNet b1.58 Reloaded: State-of-the-art Performance Also on Smaller
  Networks
BitNet b1.58 Reloaded: State-of-the-art Performance Also on Smaller Networks
Jacob Nielsen
Peter Schneider-Kamp
MQ
35
4
0
24 Jun 2024
The Unreasonable Ineffectiveness of the Deeper Layers
The Unreasonable Ineffectiveness of the Deeper Layers
Andrey Gromov
Kushal Tirumala
Hassan Shapourian
Paolo Glorioso
Daniel A. Roberts
43
79
0
26 Mar 2024
SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression
SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression
Xin Wang
Yu Zheng
Zhongwei Wan
Mi Zhang
MQ
55
43
0
12 Mar 2024
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers
Shuzhou Yuan
Ercong Nie
Bolei Ma
Michael Farber
34
3
0
18 Feb 2024
On the Efficacy of Eviction Policy for Key-Value Constrained Generative
  Language Model Inference
On the Efficacy of Eviction Policy for Key-Value Constrained Generative Language Model Inference
Siyu Ren
Kenny Q. Zhu
18
27
0
09 Feb 2024
The LLM Surgeon
The LLM Surgeon
Tycho F. A. van der Ouderaa
Markus Nagel
M. V. Baalen
Yuki Markus Asano
Tijmen Blankevoort
31
14
0
28 Dec 2023
QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
  Models
QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language Models
Saleh Ashkboos
Ilia Markov
Elias Frantar
Tingxuan Zhong
Xincheng Wang
Jie Ren
Torsten Hoefler
Dan Alistarh
MQ
SyDa
126
22
0
13 Oct 2023
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
1