ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.14732
  4. Cited By
Residual Quantization with Implicit Neural Codebooks
v1v2 (latest)

Residual Quantization with Implicit Neural Codebooks

26 January 2024
Iris A. M. Huijben
Matthijs Douze
Matthew Muckley
Ruud J. G. van Sloun
Jakob Verbeek
    MQ
ArXiv (abs)PDFHTML

Papers citing "Residual Quantization with Implicit Neural Codebooks"

19 / 19 papers shown
Title
Lossless Compression of Vector IDs for Approximate Nearest Neighbor Search
Lossless Compression of Vector IDs for Approximate Nearest Neighbor Search
Daniel de Souza Severo
Giuseppe Ottaviano
Matthew Muckley
Karen Ullrich
Matthijs Douze
MQ
88
1
0
16 Jan 2025
The Faiss library
The Faiss library
Matthijs Douze
Alexandr Guzhva
Chengqi Deng
Jeff Johnson
Gergely Szilvasy
Pierre-Emmanuel Mazaré
Maria Lomeli
Lucas Hosseini
Hervé Jégou
162
179
0
16 Jan 2024
High-Fidelity Audio Compression with Improved RVQGAN
High-Fidelity Audio Compression with Improved RVQGAN
Rithesh Kumar
Prem Seetharaman
Alejandro Luebs
I. Kumar
Kundan Kumar
94
327
0
11 Jun 2023
Autoregressive Image Generation using Residual Quantization
Autoregressive Image Generation using Residual Quantization
Doyup Lee
Chiheon Kim
Saehoon Kim
Minsu Cho
Wook-Shin Han
VGen
269
361
0
03 Mar 2022
A Self-Supervised Descriptor for Image Copy Detection
A Self-Supervised Descriptor for Image Copy Detection
Ed Pizzi
Sreya . Dutta Roy
Sugosh Nagavara Ravindra
Priya Goyal
Matthijs Douze
SSL
69
125
0
21 Feb 2022
MaskGIT: Masked Generative Image Transformer
MaskGIT: Masked Generative Image Transformer
Huiwen Chang
Han Zhang
Lu Jiang
Ce Liu
William T. Freeman
ViT
153
678
0
08 Feb 2022
Unsupervised Dense Information Retrieval with Contrastive Learning
Unsupervised Dense Information Retrieval with Contrastive Learning
Gautier Izacard
Mathilde Caron
Lucas Hosseini
Sebastian Riedel
Piotr Bojanowski
Armand Joulin
Edouard Grave
RALM
195
907
0
16 Dec 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
92
97
0
04 Oct 2021
Contrastive Quantization with Code Memory for Unsupervised Image
  Retrieval
Contrastive Quantization with Code Memory for Unsupervised Image Retrieval
Jinpeng Wang
Ziyun Zeng
Bin Chen
Tao Dai
Shutao Xia
MQ
77
45
0
11 Sep 2021
Self-supervised Product Quantization for Deep Unsupervised Image
  Retrieval
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval
Young Kyun Jang
N. Cho
MQ
52
66
0
06 Sep 2021
WeightNet: Revisiting the Design Space of Weight Networks
WeightNet: Revisiting the Design Space of Weight Networks
Ningning Ma
Xinming Zhang
Jiawei Huang
Jian Sun
56
108
0
23 Jul 2020
Deep Triplet Quantization
Deep Triplet Quantization
Bin Liu
Yue Cao
Mingsheng Long
Jianmin Wang
Jingdong Wang
MQ
58
94
0
01 Feb 2019
Revisiting the Inverted Indices for Billion-Scale Approximate Nearest
  Neighbors
Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
Dmitry Baranchuk
Artem Babenko
Yury Malkov
51
95
0
07 Feb 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
226
5,019
0
02 Nov 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
334
5,364
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
196
2,533
0
02 Nov 2016
Polysemous codes
Polysemous codes
Matthijs Douze
Hervé Jégou
Florent Perronnin
MQ
41
57
0
07 Sep 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
108
2,006
0
14 Jun 2016
Searching in one billion vectors: re-rank with source coding
Searching in one billion vectors: re-rank with source coding
Hervé Jégou
R. Tavenard
Matthijs Douze
Laurent Amsaleg
162
320
0
18 Feb 2011
1