ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10652
  4. Cited By
AutoChunk: Automated Activation Chunk for Memory-Efficient Long Sequence
  Inference

AutoChunk: Automated Activation Chunk for Memory-Efficient Long Sequence Inference

19 January 2024
Xuanlei Zhao
Shenggan Cheng
Guangyang Lu
Jiarui Fang
Hao Zhou
Bin Jia
Ziming Liu
Yang You
    MQ
ArXivPDFHTML

Papers citing "AutoChunk: Automated Activation Chunk for Memory-Efficient Long Sequence Inference"

4 / 4 papers shown
Title
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLM
DiffM
300
6,768
0
13 Apr 2022
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
182
1,783
0
18 Nov 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
Mohammad Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
293
1,861
0
17 Sep 2019
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
209
8,793
0
01 Oct 2015
1