ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10640
  4. Cited By
A comprehensive study on fidelity metrics for XAI

A comprehensive study on fidelity metrics for XAI

19 January 2024
Miquel Miró-Nicolau
Antoni Jaume-i-Capó
Gabriel Moyà Alcover
ArXivPDFHTML

Papers citing "A comprehensive study on fidelity metrics for XAI"

7 / 7 papers shown
Title
A Tale of Two Imperatives: Privacy and Explainability
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
91
0
0
30 Dec 2024
Upside-Down Reinforcement Learning for More Interpretable Optimal Control
Juan Cardenas-Cartagena
Massimiliano Falzari
Marco Zullich
Matthia Sabatelli
OffRL
72
0
0
18 Nov 2024
IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial
  Intelligence Evaluation in Histopathology
IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology
Pardis Afshar
Sajjad Hashembeiki
Pouya Khani
Emad Fatemizadeh
M. Rohban
24
4
0
29 Aug 2024
FaithLM: Towards Faithful Explanations for Large Language Models
FaithLM: Towards Faithful Explanations for Large Language Models
Yu-Neng Chuang
Guanchu Wang
Chia-Yuan Chang
Ruixiang Tang
Shaochen Zhong
Fan Yang
Mengnan Du
Xuanting Cai
Xia Hu
LRM
69
0
0
07 Feb 2024
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
177
185
0
03 Feb 2022
Metrics for saliency map evaluation of deep learning explanation methods
Metrics for saliency map evaluation of deep learning explanation methods
T. Gomez
Thomas Fréour
Harold Mouchère
XAI
FAtt
66
41
0
31 Jan 2022
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
1