ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10559
  4. Cited By
OrchMoE: Efficient Multi-Adapter Learning with Task-Skill Synergy

OrchMoE: Efficient Multi-Adapter Learning with Task-Skill Synergy

19 January 2024
Haowen Wang
Tao Sun
Kaixiang Ji
Jian Wang
Cong Fan
Jinjie Gu
ArXivPDFHTML

Papers citing "OrchMoE: Efficient Multi-Adapter Learning with Task-Skill Synergy"

3 / 3 papers shown
Title
Mixture-of-Experts with Expert Choice Routing
Mixture-of-Experts with Expert Choice Routing
Yan-Quan Zhou
Tao Lei
Han-Chu Liu
Nan Du
Yanping Huang
Vincent Zhao
Andrew M. Dai
Zhifeng Chen
Quoc V. Le
James Laudon
MoE
160
329
0
18 Feb 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
808
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,858
0
18 Apr 2021
1