ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10442
  4. Cited By
Path Choice Matters for Clear Attribution in Path Methods

Path Choice Matters for Clear Attribution in Path Methods

19 January 2024
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
ArXiv (abs)PDFHTMLGithub (4★)

Papers citing "Path Choice Matters for Clear Attribution in Path Methods"

24 / 24 papers shown
Title
Making Sense of Dependence: Efficient Black-box Explanations Using
  Dependence Measure
Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure
Paul Novello
Thomas Fel
David Vigouroux
FAtt
60
29
0
13 Jun 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic
  Review on Evaluating Explainable AI
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELMXAI
119
409
0
20 Jan 2022
Interpretable Compositional Convolutional Neural Networks
Interpretable Compositional Convolutional Neural Networks
Wen Shen
Zhihua Wei
Shikun Huang
Binbin Zhang
Jiaqi Fan
Ping Zhao
Quanshi Zhang
FAtt
56
36
0
09 Jul 2021
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
A. Kapishnikov
Subhashini Venugopalan
Besim Avci
Benjamin D. Wedin
Michael Terry
Tolga Bolukbasi
97
95
0
17 Jun 2021
Entropy-based Logic Explanations of Neural Networks
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lio
Marco Gori
S. Melacci
FAttXAI
75
79
0
12 Jun 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
101
229
0
25 Feb 2021
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
92
417
0
29 Apr 2020
XRAI: Better Attributions Through Regions
XRAI: Better Attributions Through Regions
A. Kapishnikov
Tolga Bolukbasi
Fernanda Viégas
Michael Terry
FAttXAI
59
212
0
06 Jun 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,171
0
19 Jun 2018
Visual Interpretability for Deep Learning: a Survey
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaMLHAI
142
821
0
02 Feb 2018
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,306
0
30 Oct 2017
Interpretable Convolutional Neural Networks
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
70
783
0
02 Oct 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
291
2,266
0
24 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAttAAML
76
1,525
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,879
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
188
6,015
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Not Just a Black Box: Learning Important Features Through Propagating
  Activation Differences
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
82
789
0
05 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
250
9,326
0
14 Dec 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,681
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,893
0
12 Nov 2013
1