ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10432
  4. Cited By
A2Q+: Improving Accumulator-Aware Weight Quantization

A2Q+: Improving Accumulator-Aware Weight Quantization

19 January 2024
Ian Colbert
Alessandro Pappalardo
Jakoba Petri-Koenig
Yaman Umuroglu
    MQ
ArXivPDFHTML

Papers citing "A2Q+: Improving Accumulator-Aware Weight Quantization"

7 / 7 papers shown
Title
PQS (Prune, Quantize, and Sort): Low-Bitwidth Accumulation of Dot Products in Neural Network Computations
PQS (Prune, Quantize, and Sort): Low-Bitwidth Accumulation of Dot Products in Neural Network Computations
Vikas Natesh
H. T. Kung
MQ
148
0
0
12 Apr 2025
Accumulator-Aware Post-Training Quantization
Accumulator-Aware Post-Training Quantization
Ian Colbert
Fabian Grob
Giuseppe Franco
Jinjie Zhang
Rayan Saab
MQ
30
3
0
25 Sep 2024
Towards Cheaper Inference in Deep Networks with Lower Bit-Width
  Accumulators
Towards Cheaper Inference in Deep Networks with Lower Bit-Width Accumulators
Yaniv Blumenfeld
Itay Hubara
Daniel Soudry
39
3
0
25 Jan 2024
Deep Neural Networks for Encrypted Inference with TFHE
Deep Neural Networks for Encrypted Inference with TFHE
Andrei Stoian
Jordan Fréry
Roman Bredehoft
Luis Montero
Celia Kherfallah
Benoît Chevallier-Mames
FedML
35
21
0
13 Feb 2023
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image
  Upsampling
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image Upsampling
Ian Colbert
Ken Kreutz-Delgado
Srinjoy Das
41
4
0
15 Jul 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
198
5,176
0
16 Sep 2016
1